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Joint Image and Feature Levels Disentanglement for
Generalizable Vehicle Re-identification
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Abstract— Domain generalization (DG), which doesn’t require
any data from target domains during training, is more chal-
lenging but practical than unsupervised domain adaptation
(UDA). Since different vehicles of the same type have a similar
appearance, neural networks always rely on a small amount
of useful information to distinguish them, meaning that is
more significant to remove ID-unrelated information for vehicle
re-Identification (re-ID). Therefore, it is the key to eliminating
the interference of a large amount of redundant information for
the generalizable vehicle re-ID method. To address this unique
challenge, we propose a novel disentanglement learning method
that encourages variational autoencoder (VAE) network to reduce
ID-unrelated features of vehicles by minimizing image recon-
struction errors and providing sufficient representation to vehicle
labels. To capture the intrinsic characteristics associated with
the DG task, our core idea is to build the identity information
streaming framework to separate ID-related and ID-unrelated
information at the image and feature levels. In contrast with the
general decoupling methods, our method leverages the decoupling
of joint image and feature levels to extract more generalizable
features. Furthermore, we present a brand-new vehicle dataset
of truck types named “Optimus Prime (Opri)”’, which includes
multiple images of each truck captured by cameras at different
high-speed toll gates. Experimental results on public datasets
demonstrate that our method can achieve promising results and
outperform several state-of-the-art approaches. Our codes and
models are available at JIFD.

Index Terms— Vehicle re-identification, variational autoen-
coder, domain generalization, representation disentanglement.

I. INTRODUCTION

S an important branch of intelligent monitoring system,
object re-ID has become an indispensable research topic
in security management applications due to its non-contact
advantages and the urgent need for intelligent video analysis.
Supervised deep learning methods [1], [2], [3], [4], [5], [6],
[7], [8] based on discriminative feature representation learning
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can effectively improve the recognition performance on re-
ID tasks. Notably, the person re-ID task [9], [10] of UDA
has recently gained increasing attention and its performance
is even comparable to supervised methods. Although person
re-ID methods based on UDA have achieved remarkable
progress in recent years, it has not been fully explored for
the same vehicle task, especially generalizable vehicle re-ID
task.

Many current domain adaptation methods [11], [12], [13],
[14] for vehicle re-ID mainly use clustering or pseudo-label
strategies to improve recognition performance. However, these
methods [15], [16], [17], [18], [19], [20] may be difficult to
implement in practical applications, since unlabeled data in the
target domain is required for training. In comparison to person
re-ID task, vehicle re-ID encounters additional challenges.
For example, vehicles with different identities may have the
same brands and colors, humans with knowledge priors can
still easily distinguish them in this realistic scenario. But it
can be particularly difficult for neural networks to extract
discriminant ID-related features from different vehicles that
are highly similar in appearance [21]. This problem exists in
a wide range of computer vision tasks, such as fine-grained
recognition tasks [22], [23].

Facts have proved that achieving pedestrian matching does
not need to extract all the characteristics related to pedes-
trian from the image, and only the ID-related features are
sufficient [24]. Therefore, how to effectively separate the
ID-related and ID-unrelated features from the images of a
vehicle is the key to the re-ID methods. Recent disentan-
gled feature representation methods [25], [26], [27] focus on
learning invariant features to achieve this purpose. However,
existing machine learning models are data-driven and usually
require samples of various camera angles and illumination.
As a result, they may rely on redundant or pseudo-correlation
features [28], [29], [30], [31], [32], and lose generalizable
performance [33]. Moreover, most of the existing decoupling
methods, which use multiple different images of the same
identity as the input of the backbone of the neural network,
only suppress ID-unrelated features at the feature level through
end-to-end learning. Because these methods do not consider
the suppression of the ID-unrelated information at the image
level before the feature extraction, it leads to a large amount
of redundant information in the image directly flowing to
the neural network training. Assuming that redundant infor-
mation can be removed or decoupled at the image level,
we can easily suppress ID-unrelated features at the feature
level.
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Fig. 1.  Flowchart of the proposed method. The method extracts vehicle
ID-related features and removes redundant information through a simple
architecture. Since the task of the VAE network is to be as consistent as
possible with x, the VAE network generates g(x) containing a large amount
of redundant information from the original image x. Meanwhile, the ID
classification network can complete the re-ID DG task with reconstruction
errors x — g(x). That is, we squeeze the information that x provides through
a bottleneck formed by the VAE network.

]

(b) RC(x,g(x))~97% (c) RC(x,x-g(x))~3%

Encoder color
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Fig. 2. Visualization results of grad-CAM [40] based on CNN method. RC(x,
g(x)) represents the reconstruction accuracy between the original image x and

the g(x) generated by VAE (i.e., RC(x, g(x)):l—%).

Inspired by the disentangled representation learning meth-
ods [34], [35], [36], our key idea is to control the
reconstruction accuracy of VAE [37] from the perspective of
information bottleneck theory [38], [39], so as to effectively
separate out redundant information g(x) which is unrelated to
the vehicle, as shown in Fig.1. The goal of VAE network forces
the two classification networks to pay attention to the most
discriminating information for feature-level disentanglement,
while the goal of the two classification networks forces VAE to
reconstruct the ID-unrelated part of the vehicle for image-level
disentanglement. In contrast, we believe that x — g(x), which
contains a small amount of information in the original image
x, can provide sufficient ID-related feature representations.
The advantage of establishing an information bottleneck is to
reduce the interference of redundant information to the classi-
fication network and improve its generalization ability. Fig.2
presents the visualization results of our proposed method from
the reconstruction perspective. For simplicity, we can represent
x —g(x) as r(x) in this subsequent paper. In Section VI of this
paper, a large number of ablation experiments demonstrate the
positive effect of the information bottleneck on the DG task.

Overall, our work is driven by two aspects. On the one
hand, our method is distinct from traditional domain-invariant
feature methods [12], [42], [43], [44] in that it does not
require image augmentation or feature reconstruction at all.
Moreover, a simple but effective decoupling framework is
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Fig. 3. The vehicle type distribution of a long-tailed dataset (e.g., the

VeRI-Wild 2.0 dataset [41] with more than 40,000 IDs).

introduced for the first time, which includes both image-level
disentanglement and feature-level disentanglement. To com-
plete image-level disentanglement and form an information
bottleneck, we consider the reconstruction quality of GAN [45]
and VAE [46] for image-level disentanglement. We find that
the GAN models attempt to rebuild fine-grained details, but it
often introduces additional irrelevant information [47]. Com-
pared with GAN, the disadvantage of VAE is that it does not
use an adversarial network, so it tends to produce unrealistic
and blurry images. To alleviate the problems caused by these
two methods of image generation, we replace g(x) generated
by VAE with r(x) to extract ID-related features by a super-
vised classification network. As a result, the proposed method
can effectively reduce the irrelevant information introduced
by the generated source domain images with poor qualities.
And it can encourage the VAE network to reduce ID-unrelated
features of vehicles by minimizing image reconstruction errors
and providing sufficient representation to vehicle labels.

On the other hand, the exploration of domain adaptation
methods for vehicles is limited by the collection of vehicle data
types. Although the existing five commonly used datasets of
the real-world VeRi—776 [48], VeRI-Wild [49], CityFlow [50],
VehicleID [51], Vehicle-1M [52] and the synthetic Vehi-
cleX [53] have been widely used in vehicle domain adaptation
tasks and achieved good performance [18], [19], [54], it may
still be difficult to maintain the same level of recognition
performance in a specific real-world scenario. Another reason
is that the long-tailed problem [55] also exists in the existing
public vehicle datasets [41], [52] (see Fig.3), but this problem
has rarely been studied in the vehicle re-ID task. According to
the number statistics of vehicle types in these datasets, the total
number of other cars accounts for a large proportion compared
with trucks. It limits the generalization ability of the re-ID
models in real-world scenarios. In order to combine existing
public datasets to study generalized vehicle re-ID, we build a
fine-grained vehicle dataset “Optimus Prime (Opri)”, which is
composed entirely of truck images. Fig.4 shows sample images
of the Opri dataset.

In summary, the contributions of this paper can be summa-
rized as follows:

e To the best of our knowledge, a generalizable vehicle

re-ID task is proposed for the first time in this paper.
We design an information bottleneck scheme to reduce
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Fig. 4.

Sample images of the Optimus Prime dataset. Each vehicle has at least two images in our dataset. The first row shows significant intra-instance

differences for the same vehicles, which originate from changes in vehicle appearance and light intensity. Images in the second row all come from different
vehicle identities with similar appearance and show slight inter-instance differences of similar vehicles. License plates and faces are obscured due to privacy.

the redundant information in the source domain dataset,
so as to reduce the interference to ID-unrelated features
and obtain a more generalized feature representation.

e We propose a novel disentanglement learning method
called Joint Image and Feature levels Disentanglement
(JIFD), which integrates the benefits of image-level dis-
entanglement and feature-level disentanglement in one
framework. We for the first time show that the recon-
struction errors generated by the VAE network can be
used as an information bottleneck to handle generalizable
vehicle re-ID task. By minimizing the mutual information
of ID-related and ID-unrelated features, feature-level dis-
entanglement can be achieved and can guide image-level
disentanglement to filter out redundant information of
vehicle images.

e A large-scale truck dataset, Opri, is proposed for gen-
eralizable vehicle re-ID tasks in real-world highway
scenarios. Opri is distinguished from existing datasets
in three aspects, including data type, camera perspective,
and practical application.

II. RELATED WORK

In this section, we briefly introduce recent existing re-ID
methods, which include unsupervised domain adaptation and
domain generalization methods. Furthermore, we focus on
methods related to representation disentanglement.

A. UDA for Vehicle Re-ID

Compared with supervised vehicle re-ID methods, com-
pletely unsupervised vehicle re-ID has not been fully
explored. To achieve this goal, some studies [17], [56],
[57] proposed to utilize camera information for unsupervised
tasks. Zheng et al. [17] proposed a viewpoint-aware clustering
algorithm, which assumed that images of vehicles under
adjacent viewpoints shared the similarity in appearance. But
it is still challenging for the scenes of only two larger

differential perspectives. Yu et al. [56] achieved comparable
performance through a clustering-based technique using only
the label information of multiple cameras. However, the exist-
ing pseudo-label methods did not consider the distribution
difference between cameras, but directly measured the feature
similarity of different samples, which led to the reduction of
the accuracy of cross-camera labeling calculation. To solve this
problem, Xuan and Zhang [57] designed a two-stage pseudo-
labels generation method to calculate sample similarities
across cameras for obtaining high-confidence pseudo-labels
and better optimization of the model. UDA methods are
usually considered to improve the generalization capacity of
CNN models. It is different from fully unsupervised methods.
The goal of UDA is to transfer knowledge learned from one or
more labeled source domains to an unlabeled target domain.
MMT [18] proposed to refine the generation process of soft
pseudo-labels by mutual mean-teaching. Ge et al. [19] pro-
posed a self-paced learning framework to dynamically update
hybrid memory for preserving the most reliable clusters.
Wang et al. [58] proposed an uncertainty-aware clustering
framework to alleviate the noise pseudo-label problem to
a large extent for UDA tasks. Most domain adaption or
clustering-based approaches try to alleviate the effects of
unreliable pseudo-labels, or find the high-confidence samples
from generated pseudo-labels. As unlabeled data in the target
domain is required for training, the current UDA method still
cannot solve the real-time problem.

B. DG for Re-ID

Despite its practical value in the deployment of real-world
applications, generalizable re-ID has rarely been studied.
Recent works [59], [60], [61], [62] on this topic have
mainly focused on learning domain-invariant features by min-
imizing the inter-domain differences of the same identities.
Choi et al. [63] proposed a meta batch-instance normaliza-
tion (MetaBIN) approach. Their approach not only employs
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normalization layers but also uses meta-learning to pre-
vent overfitting of the model in labeled source domains.
Yu et al. [64] proposed a multiple domain experts collab-
orative learning framework, which utilizes domain-specific
experts for better exploiting all training domains. Semi-
supervised knowledge distillation (SSKD) [65] proposed to
learn domain-invariant representations for generalizable person
re-ID. The above-mentioned methods alleviate the overfitting
problem by learning identity-invariant features at the feature
level, while our method aims to joint image and feature levels
decoupling to make neural network have better generalization
ability.

In order to further study the generalization performance of
re-ID models, Liao and Shao proposed three different deep
metric learning methods [66], [67], [68]. The Query-Adaptive
Convolution (QAConv) method [66] constructed a class
memory module to calculate the corresponding relationship
between feature maps of different samples on the fly. Secondly,
Liao and Shao found the vision transformer and the vanilla
transformer methods lack the attention between image pairs
and proposed TransMatcher [67]. Given pairs of images,
they adapted the self-attention mechanism in transformers and
applied it to metric learning for image matching. Furthermore,
they proposed a graph sampling strategy and combined it with
QAConv method (QAConv-GS) [68] to effectively improve
the convergence rate of the model and generalization perfor-
mance under unknown scenarios. The closest related work to
ours was [25], which proposed a novel generative adversarial
network called identity shuffle GAN (IS-GAN). This approach
recombines decoupled identity-related and -unrelated features
to generate new pairs of images. But this work could not
effectively prevent from introducing noise information caused
by generated images with poor qualities. Another work [26]
proposed two orthogonal streams with disentangled feature
representation, which encouraged the disentangled face fea-
tures to encode a full representation of the input image.
In contrast, we did not use the images generated by VAE
network to extract ID-related features directly. In particular,
to the best of our knowledge, domain generalization research
work on vehicle re-ID has not progressed. This paper is the
first to propose domain generalization for vehicle re-ID tasks.

C. Representation Disentanglement

Different from the traditional domain generalization
approaches, representation disentanglement [41], [46], [69],
[70] was designed to mine potential generative factors in data
and be able to enable the manipulation of relevant representa-
tions for specific tasks [34], [71], [72], [73]. The motivation of
B-VAE [46], [74] is to relax the information bottleneck [38],
[39], so that it can obtain a more comprehensive representation
ability and higher reconstruction accuracy. S-VAE added an
additional hyperparameter B to the VAE [75], [76] target
function, which effectively controlled the encoding capacity
and obtained more potential representation factors. However,
without the premise of inductive biases both on the models
and the dataset [77], this is basically impossible to achieve
the purpose of decoupling. Hence, it is necessary to introduce
supervisory information to VAE models and the supervisory
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information may provide key guidance for representation
disentanglement, as shown in the dual decoupling strategy
in this paper as well. Hadad et al. [73] presented a simpler
two-step adversarial architecture for representation disentan-
glement. Yang et al. [36] introduced a simple §-VAE classifier
architecture to achieve the purpose of class-disentanglement
and applied it to adversarial detection and adversarial defense
tasks. Class-disentanglement [36] also provided a new per-
spective for understanding how neural network classifiers
predict the class of images through the information bottleneck.
These decoupling methods achieved satisfactory results in
specific tasks.

In contrast to previous re-ID works, our work is motivated to
design an information bottleneck to complete the decoupling
task. JIFD integrates the benefits of image-level disentangle-
ment and feature-level disentanglement in one framework.
To better complete feature-level disentanglement, we minimize
the mutual information between ID-related and ID-unrelated
features. Moreover, our proposed method can be used as a
plug-and-play training strategy and combined with other state-
of-the-art methods to improve performance.

III. PROPOSED METHOD

Our method utilizes the reconstruction of VAE and two
classification branches to perform the dual disentanglement.
We exploit this simple but effective architecture to extract
ID-related features while separating redundant ID-unrelated
features. Then, feature-level disentanglement of mutual infor-
mation is introduced to refine the ID-related information.
We formulate our task as follows: let {(xi , yl? dr yéam) IS\ }:’; |
be the source domain with S denoting the source dataset,
which contains the i-th instance x' and its corresponding
ID label y!,, camera label y',,, where n, is the total
number of vehicle images. The architecture of our model is
shown in Fig.5. Given an input image x’, we use the VAE
network to complete the image reconstruction and generate
the image g(x’), and then obtain the image x’ — g(x’) by
element-wise subtraction between images x’ and g(x’). For
simplicity, we denote x’ as x. By the reconstruction of VAE,
the input image x is decomposed into two parts at the image
level, which are provided to the two branches explicitly as
necessary information. The information shunting of the dual
classification network can maximize the compression of the
information of the input image x, and effectively preserve
the ID-related features corresponding to the output label.
Therefore, the extracted features are more discriminative for
domain generalization re-ID tasks.

A. Image-Level Disentanglement

Vehicle re-ID faces the challenge that vehicles of the
same type and color have highly similar appearances and
only differ in subtle features that play a small part in the
overall image [24]. Therefore, to extract ID-related features
of these subtle differences, we use image reconstruction to
achieve image-level disentanglement and form an information
bottleneck. We have observed that GANs and VAEs serve
different modeling purposes. GANs primarily focus on gener-
ating new images, while VAEs are better suited for modeling
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Fig. 5. Overview of the proposed architecture for vehicle re-ID. Firstly, the original image x are fed into VAE network to complete image reconstruction and
g(x) is obtained. r(x) is further obtained by element-wise subtraction. Then, g(x) and r(x) are sent into two classification branches and trained according to
camera and ID labels respectively. Camera classification branch is responsible for g(x) to complete feature extraction of camera styles, that is, related domain
styles and ID-unrelated features. ID classification branch utilizes the minimum necessary information from r(x) to maximize ID-related features.

data distribution and learning implicit representations. VAEs
belong to the category of deep generative models, training both
a probabilistic encoder and a decoder simultaneously. On the
other hand, GANSs incorporate the concept of adversarial learn-
ing, where a discriminator is trained to differentiate between
generated and real data, while the generator aims to minimize
this distinction. Although GANs can produce natural-looking
images, they often alter the logo and overall shape of the
vehicle, which is not ideal for image reconstruction. Addi-
tionally, GANs lack an effective inference mechanism and
only focus on data generation process estimation and the
instability of GANs in the optimization process may cause
the collapse of the model [78], [79]. Hence, we use VAE for
image reconstruction.

Since the VAE aims to reconstruct the original image to the
greatest extent possible, the reconstructed image retains plenty
of features shared between categories, such as background
color, illumination, and patterns, which are redundant for
vehicle re-ID tasks. By the reconstruction of VAE, the input
image is divided into two parts at the image level. ID-related
and ID-unrelated features can be extracted by r(x) and g(x)
in a supervised way respectively. VQ-VAE [37] is one of
VAEs, which maintains a codebook and learns a series of
discrete latent representations. Vector quantisation can learn
discrete latent representations and avoid posterior collapse
when pairing with a strong autoregressive decoder in the VAE
frame. The latent codebook is not statics but learned and
the coding range is more controllable. As we can see from
Fig.5, the VQ-VAE consists of an encoder, parameterized by
¢, that can produce the posterior g4 (z|x) of the latent factors
z, and a decoder, parameterized by 6, that can produce the
data likelihood pg(x|z). It also defines a latent embedding
space e € R where k is the size of the discrete embedding
space, and d is the dimensionality of each embedding vector
ej € RY, j € 1,2,... k. The shared embedding space e is

then used to compute the discrete latent variables z by nearest
neighbor search. The original image x is first passed into an
encoder to acquire the continuous coding vector z.(x). Then,
by the nearest neighbor search, z.(x) is mapped as one of the k
vectors in the embedding space, and the corresponding indexes
and the encoding vector z,(x) are obtained. Finally, z4(x)
is passed into the decoder, to reconstruct the original image
x and obtain g(x). r(x) is further obtained by element-wise
subtraction. We apply a VQ-VAE with the following objective
function:

Lyge = MSE(x, g(x)) + ¥ lIsg[ze(x)] — ell3
+ 8 llze(x) — sglelll3,

where M SE refers to the mean squared error, e is the quan-
tized code for the training example x, g(x) is the reconstructed
image, z.(x) is the output of the encoder, sg represents a
stop-gradient operation that blocks gradients from flowing into
its argument, y and § are hyperparameters. The first term is
reconstruction loss, aiming at recovering the original image.
The second term is codebook loss, to update the codebook
variables, making the selected codebook e close to the output
of the encoder. The third term is commitment loss, keeping the
encoder’s output consistent with the selected codebook vector
to prevent it from fluctuating too frequently between different
codebook vectors. The second term and the third term are to
align the vector space of the codebook with the output of the
encoder.

However, the reconstruction by VAE alone does not guar-
antee that r(x) contains only ID-related features and filters
out redundant features. The image-level disentanglement is not
yet fully implemented. For the re-ID task, the VAE network
needs to be guided by the classification network to achieve
decoupling capability.
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B. Feature-Level Disentanglement

If only ID labels are used to supervise the training of r(x)
where g(x) is unconstrained, the ID classification network
is enabled to extract basic ID-related features, but there is
still feature interference that is not related to ID. For the
vehicle re-ID generalization tasks, it is critical to suppress the
extraction of the ID-unrelated features. Since re-ID is a cross-
view task and camera labels are easily available, we consider
the addition of camera labels. When g(x) is supervised by
camera labels, the same features between different identities
from one camera view are extracted, that is, domain features
and ID-unrelated features, which match with the characteristics
of g(x) itself. Therefore, it is reasonable to introduce the
camera branch to process the ID-unrelated features and form
a double-branch network together with the ID branch.

As shown in Fig.5, E; and E; are two encoders using
ResNet-50 [80] pretrained on the ImageNet as backbones.
Cy and C; are two classifiers composed of BN (batch nor-
malization) and F'C (fully-connected layer). GA P denotes the
global average pooling operation. The vehicle ID classification
branch is supervised by the vehicle ID labels, enforcing r(x) to
contain as many ID-related features as possible. Meanwhile,
g(x) is sent to the camera classification branch to process
the camera-related information. The two branches are imple-
mented by corresponding cross-entropy loss respectively:

K
Lia = —E—go).ya) 2 [k = yia]log (C1 (fi)),  (2)
k=1
K>
Lcam = _E(g(x),yl,am) Z [k = ))cam] 10g (CZ (fcam)) ’ (3)
k=1
Leis = Lig + Leam, (4)

where K-way class identifier Cy is trained to correctly predict
the vehicle ID labels and Kj-way class identifier C, is
supervised by the camera ID labels, f;; means the feature
representation after GAP operation in the ID branch and f.4,
means the feature representation after GAP operation in the
camera branch. The classification loss is the sum of the two.

The two branches are complementary to each other and
undertake the processing of different information, which make
them have different requirements for the inputs of the two
classification networks. With the feedback of the feature-
level disentanglement, r(x) and g(x) compete against each
other and complete the image-level disentanglement. From
the perspective of information bottleneck, the two branches
form the information bottleneck constraints for the information
flowing on each other, which reduces the burden of the
classification task of each branch. We can extract the minimum
necessary information required by the convolutional neural
network to predict the class of original input, namely features
on the ID branch. Since the features extracted from the ID
branch are only related to vehicle ID and are not affected by
ID-unrelated information, leveraging these features can pro-
vide better and more robust performance for vehicle re-ID in
the domain generalization tasks.
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C. Mutual Information Disentanglement

Although preliminary feature disentanglement has been
accomplished intuitively by the two supervised networks
mentioned above, some of their features are still entangled.
In this section, we introduce a mutual information minimizer
to enhance the feature disentanglement. We postulate that
excellent feature disentanglement can guide the VAE network
to better complete the task of image disentanglement, so as
to actively separate ID-related features from the remaining
information in the image. Mutual information is a measure
of mutual dependence or mutual dependence between random
variables based on Shannon entropy.

It can further realize the purpose of feature disentanglement.
We minimize the mutual information between f;s and feam-
This minimization forces fij; to be refined further so as to
retain less ID-unrelated information. The mutual information
between fijg and f.., can be understood as the decrease of
the uncertainty in f;g given fegm:

[ (Dfy; Dfoun) = HDj)) — HDfy| D)y (5)

where H is the Shannon entropy, and H(Dy,|Dy,,,,) is the
conditional entropy of f..,», given f;;. For simplicity, mutual
information quantifies the dependence of two random variables
fia given feam. It has the form,

I (Dfld’ cham) = /XXZ log

where Pxz is the joint probability distribution of
(Dfid; cham), IP)X = fZ dIEDXZ and PZ = fX dPXZ are
marginal distributions of Dy, and Dy, respectively, ®
denotes Kronecker product. Based on the above discussion,
the mutual information is equivalent to the Kullback-Leibler
(KL-) divergence between the joint, Py, and the product of
the marginals Py ® Pz:

I (Dyy, D) = Dxr PxzI[Px @ P7), (7

where Dk is defined as,

dPxz, 6)

dpP
Dk (P|Q) := Ep[log @], ®)

whenever P is absolutely continuous with respect to Q.
The KL divergence can regularize the ID-unrelated features
by comparing the distribution ranges of ID-related features.
In the intuitive sense of Eq.7: the smaller the value of the
objective function, the weaker the correlation between X
and Z. We adopt the Mutual Information Neural Estima-
tor (MINE) [72] to estimate the lower bound on n i.i.d
(independent and identically distributed) samples by a neural
network Ty.

1 D/,-B =sup E_w [Tp] — lo (E n) Sn I:eTg:I).
( Jia fcam)n Qeg Pg()z[ 9] g P(X)®]P>(Z)
(©))
It is worth noting that Eq.9 defines a new way to measure
information, and the expression ability of the convolutional
neural network can ensure that it can be approximately equal

to mutual information with arbitrary accuracy. In practice,
for simplicity of calculation, Monte Carlo integration [34]
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is leveraged to estimate the expectations of Eq.9. The cost
function of the mutual information disentanglement is as
follows:

1
Lyr=1 (Dﬁd’charn) = E T (fid, feam, )
i=1

1 < /
1 - T(fidvfram’g) 10
- Og(n E e ( )

i=1

where (fiq, feam) are sampled from the joint distribution and

Siam 1s sampled from the marginal distribution.

D. Loss Function Design

By jointly taking all loss functions into account, the total
loss function is formulated as:

Liotal = A Lyge +A2Leis + 3Ly (1 1)

where A1, A» and A3 are hyperparameters to control the contri-
butions of every part, which are 1, 0.2 and 0.01 respectively.

There is an empirical study of the trade-off between VAE
reconstruction and classification. The weights setting should
avoid the situation of strong recognition ability of classi-
fiers and weak reconstruction, which may cause premature
convergence of the whole model and poor generalization
performance. Different from other methods to disentangle
latent factors in latent space, our method integrates the dis-
entanglement of image-level and feature-level, which is more
intuitive and more interpretable. Each part of the model is
indispensable and constitutes the whole of JIFD, which is
simple but effective.

E. Training and Inference

We train JIFD in two stages. During the first stage, we first
fix classifiers Cy, C, and train the VAE encoder E and
the decoder D, the camera encoder E; and the ID encoder
E, with the corresponding losses Lyges Leagm and Ljg. This
ensures that the VAE network is consequently strong enough
to reconstruct the original image and provides different image
parts (i.e. g(x) and r(x)) for E; and E; respectively. Sub-
sequently, the images r(x) and g(x) are used to extract the
ID-related and ID-unrelated features fi; and f.q, through
E> and Ejp, as is shown in Fig.5. Finally, by minimizing
the mutual information between disentangled feature pair
(fids feam), we update mutual information estimator M by
Eq.10. The first stage iterates for 20 epochs. In the second
stage, we train the entire network and update all parameters
in an end-to-end manner. The detailed training process is
presented in Algorithm 1.

In the inference stage, each test image x is fed into the
VAE network to complete image reconstruction and then g(x)
is obtained. By subtracting g(x) from x element-by-element,
we can obtain r(x). We use the ID encoder E, to extract
ID-related features from the image r(x). This feature represen-
tation enables JIFD to efficiently perform generalizable vehicle
re-ID by computing the cosine distance between a set of probe
images and a set of gallery images.
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Algorithm 1 Learning Algorithm for JIFD

ng

Input: source labeled dataset {(xi, ylf'd, yéam) € S}l.:l, VAE
encoder E, VAE decoder D; camera encoder E|, camera clas-
sifier C;; ID encoder E,, ID classifier C,; mutual information
estimator M.

Qutput: well-trained encoder E , well-trained decoder b;
vgell-trained ID feature extractor Ez, well-trained ID classifier
C.

1: while not converged do

2: Sample mini-batch from {(x', y!,. y/,,,) € S }:”:1,
3: if epoch < iter,,. then

4: Fix Cy, Cy;

5: Variational Autoencoder:

6: Update E, D by Eq.1;

7: Feature-level Disentanglement:

8: Update E; by Eq.3;

9: Update E, by Eq.2;

10: else

11: Variational Autoencoder:

12: Update E, D by Eq.1;

13: Feature-level Disentanglement:

14: Update E; by Eq.3;

15: Update E, by Eq.2;

16: Update C; by Eq.3;

17: Update C, by Eq.2;

18: Mutual Information Minimization:

19: Calculate mutual information between the disentan-

gled feature pair (fig, feam) With M;
20: Update M by Eq.10;
21: return E = E, D= D, Ez = Ey, éz = (.

IV. EXPERIMENT

Domain generalization aims to transfer the learning task
from a single or multiple source domains to unseen tar-
get domains. Currently, a leave-one-domain-out protocol is
applied to most DG methods [81], [82], [83], [84], [85] to
evaluate performance and verify their effectiveness. Since the
person datasets have different scales and types (see Table 1),
this protocol is also widely used in most DG methods for
person re-ID. For example, the previous works [63], [86],
[87] conduct their experiments on five small re-ID datasets
including PRID [88], GRID [89], VIPeR [90], i-LIDs [91]
and CUHKO1 [92]. Only a few methods [67], [68], [93]
are designed to use a single domain to study generalization
capabilities.

We try to follow this protocol for the vehicle domain gen-
eralization task. However, (1) the number of vehicle datasets
is less than that of person datasets. There are significant
differences in scale between different vehicle datasets, and
experiment results in multi-source DG settings cannot reflect
the data advantages of small datasets. (2) The VehicleX [94]
dataset only provides a training set and these synthesized
images of VehicleX use samples from the VeRi-776 [95]
and VehicleID [51] datasets as references. Hence, we believe
that VehicleX— VeRi—776 and VehicleX— VehicleID are not
purely DG tasks. (3) Our method requires camera labels during
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TABLE I

STATISTICS OF PERSON AND VEHICLE DATASETS. T:SYNTHESIZED DATA.
‘" DENOTES THAT NO REPORTED RESULT IS AVAILABLE

Person Datasets IDs images cameras scale
i-LIDS [91] 119 476 2 small
VIPeR [90] 632 1,264 2 small
GRID [89] 251 1,275 6 small

PRID [88] 934 1,134 2 small
CUHKO1 [92] 971 3,882 2 small
Market1501 [97] 1,501 32,668 6 medium
CUHKO3 [98] 1,467 28,192 2 medium
DukeMTMC [99] 1,812 36,411 8 medium
MSMT17 [100] 4,101 126,411 15 large
Unreal{[101] 3,000 120,000 34 large
RandPersont[102] 8,000 228,655 19 large
PersonX{[103] 1,266 273,456 6 large
MARS [104] 1,261 1,191,003 6 huge
Person30K [87] 30,000 1,384,940 6,497 huge
Vehicle Datasets IDs images cameras scale
VeRi-776 [95] 776 49360 20 medium
VehicleX1[94] 1,362 192,150 11 large
VehicleID [51] 26,267 221,763 12 large
CityFlow [50] 666 229,680 40 large
VeRI-Wild [49] 40,671 416,314 174 large
VeRI-Wild 2.0 [41] | 42,790 825,042 274 huge
Vehicle-1M [52] 55,527 936,051 - huge

model training, but the large-scale vehicle re-ID benchmark of
VehicleID and Vehicle-1M cannot provide this information.
For the above reasons, we cannot follow the leave-one-
domain-out protocol. Since this paper is the first to propose
domain generalization for the vehicle re-ID task, we try our
best to construct comprehensive experimental results for this
task.

To demonstrate the performance gap between UDA and DG
methods in terms of recognition accuracy, we compare two
commonly used UDA methods: AWB [96] and SPCL [19],
as illustrated in Fig. 6. While they achieve comparable perfor-
mance on VehicleX— VeRi-776, their recognition performance
significantly deteriorates on VehicleX— Opridue to the domain
bias between the source and target domains. This performance
disparity highlights that current UDA models primarily focus
on aligning the feature distribution between the source and
target domains, without adequately considering the inherent
differences and relationships between different domains.

A. Datasets

We conduct experiments on VeRi—776 [95], VehicleX [94]
and Opri. The details of these datasets are as follows and
summarized in Table II. This paper puts forward three kinds of
DG experimental settings, including Real (VeRi—776)— Real
(Opri), Virtual (VehicleX)— Real (Opri) and Real+Virtual
(VeRi-776+VehicleX)— Real (Opri). Fig.7 shows the perspec-
tive changes corresponding to different datasets. In addition,
we also discuss the recognition performance of the current
domain generalization methods under supervised settings.

1) VeRi—776 [95]: The VeRi-776 dataset consists of the
training set with 37,778 images of 576 vehicles and the testing
set with 11,579 images of 200 vehicles, which are captured
by 20 cameras in a real-world traffic scenario. According to
our data statistics, there are few images of truck types in this
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Fig. 6. The experimental results obtained by AWB [96] and SpCL [19] on
VehicleX— VeRi-776 and VehicleX— Opri.

VeRi— 776

VehicleX

Opri

Fig. 7. Comparison of perspective changes in different datasets.

dataset and more images of other types of vehicles. Therefore,
there is a long tail problem in VeRi-776.

2) VehicleX [94]: The VehicleX dataset is synthetic data,
generated by a publicly available Unity engine [105], [106]
and further converted to real-world style via SPGAN [107].
The dataset only provides a training set, which contains
192,150 images of 1,362 vehicles in total.

3) Opri: The Opri dataset is a collection of images of var-
ious types of trucks captured in real-world highway scenarios
using 4K resolution cameras. This dataset is captured in a
24-hour-a-day uninterrupted manner by multiple surveillance
cameras installed in several cities in China. It consists of
130,994 images of 17,835 trucks, which are cleaned by eight
researchers over a two-month period. And all the different
images of a truck are captured by different cameras. For
example, when a truck appears under different cameras, each
camera captures only one frontal image of this truck. The
dataset is challenging for domain adaptation and domain
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TABLE I
STATISTICS OF THE DATASETS USED IN THE PAPER. ‘—” DENOTES THAT NO REPORTED DATA IS AVAILABLE
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Dataset train IDs train images test IDs query images gallery images cameras total images

VeRi-776 576 37,746 200 1,678 11,579 20 51,003

VehicleX 1,362 192,150 - - - 11 192,150

Opri 8,918 67,321 8,917 8,917 54,756 - 130,994
TABLE III

Fig. 8. The Opri dataset is collected from in real-world highway scenarios.
The three images from left to right represent vehicle images captured by the
camera network under bright light, reflective paint, and license plate occlusion,
respectively.

DG PERFORMANCE COMPARISON WITH OPRI AS THE TARGET DOMAIN.
VERI-776 Is USED AS THE SOURCE DATASET IN OUR EXPERIMENT.
THE CUMULATIVE MATCHING RATE(%) AND MEAN AVERAGE
PRECISION (MAP)(%) ARE LISTED

VeRi-776— Opri
mAP  rank-1 rank-5 rank-10
NIPS 2020 40.8 46.8 59.8 65.5
TIP’2022 28.3 36.4 47.4 51.9
TIP 2022 252 32.9 432 48.1

VeRi—776— Opri

UDA Methods

SpCL[19]
AWB-Pre[96]
AWB-Post[96]

DG Methods
mAP  rank-1  rank-5 rank-10
Baseline[1] TMM2019 | 183  27.8 35.9 39.7
generalization tasks as it contains significant changes in truck IS-GAN[25] TPAMI'2019 | 264  37.8 47.1 51.4
appearance. In vehicle tracking and re-ID applications, most MetaBIN[63] CVPR’2021 | 22.0 325 419 459

of the images captured by the camera network in the highway
scene are frontal images of the truck in motion, as shown
in Fig.8. The advantage of frontal truck images is that it

Mixstyle[81]
OSNet-AIN[93]
QAConv-GS[68]

ICLR 2021 26.4 36.2 47.1 51.6
TPAMI'2021 | 27.3 37.9 483 52.6
CVPR’2022 35.2 44.6 56.4 61.0

can be combined with license plate recognition to realize o ransMawcher67] | NIPS2021 | 347 428 560 6L
intelligent traffic management automatically. Considering the JIFD This work 253 330 455 499
mntellig g u Y. mng TransMatcher[67]+JIFD 412 502 631 614

above reasons, the Opri dataset is proposed. It is distinguished
from existing datasets in three aspects, including data type,
practical application, and fine-grained vehicle re-ID. For now,
it is only open source for 131K images' Camera labels
are not provided due to relevant policies. Efforts are being
made to address this issue, and more data will be released
soon.

TABLE IV

DG PERFORMANCE COMPARISON WITH OPRI AS THE TARGET DOMAIN.
VEHICLEX IS USED AS THE SOURCE DATASET IN OUR EXPERIMENT.
THE CUMULATIVE MATCHING RATE(%) AND MEAN AVERAGE
PRECISION (MAP)(%) ARE LISTED

UDA Methods VehicleX—Opri
mAP  rank-1 rank-5 rank-10
B. Implementation and Evaluation Protocol SpCL[19] NIPS*2020 | 41.5  47.2 61.0 66.4
We adopt an ImageNet-pretrained ResNet-50 [80] as the AWB-Pre[90] TIP'2022 | 297 376 491 54.1
backbone for two encoders. For a fair comparison, the AWB-Post[96] TIP'2022 263 34.6 454 50.4
experimental results of other state-of-the-art methods all use DG Methods VehicleX— Opri
ResNet-50 as the backbone. Besides, in order to further verify : i mAP__ rank-1 _ rank-5  rank-10
the effectiveness of JIFD, we combine it with TransMatcher l\f;;?;j[[é;] g\//lpl)\fyi(())lzg] ;?Z i?(l) i?: jﬁ';
[67] method Whlch has a strong.er backbon§ and the same Mixstyle[S1] iR 202l | 206 294 204 148
objective function. All our experiments are implemented on OSNeLAIN[93] | TPAMI2021 | 140 215 302 31
one NVIDIA GeForce RTX 3090Ti USiIlg the PyTOI'Ch toolbox. TransMatcher[67] NIPS’2021 28.9 36.7 50.4 55.7
All vehicle images are resized to 384 x 128. The train- JIFD This work 23.0 328 43.1 474
ing images are augmented with random horizontal flipping, TransMatcher[67+JIFD 309 375 52.1 579

padding and random cropping. The batch size is 32 and the
total number of training epochs is set to 50. The learning rate
is set to le — 5. AdamW is employed as an optimizer. Mean
Average Precision (mAP) and Cumulative Matching Charac-
teristic (CMC) at Rank-k are used to evaluate the experimental
performance. VeRi—776— Opri indicates that VeRi-776 is a
labeled source domain and Opri is an unseen target domain.
VehicleX— Opri and VeRi—776+VehicleX— Opri have similar
settings.

IThe Opri dataset can be downloaded at https://xmu-smartdsp.github.
io/dataset/OptimusPrime.html.

C. Comparison With Baseline

To conduct a fair and effective comparison with the baseline
and state-of-the-art methods, we adopt cross-entropy loss as
the basic objective function for all experiments. We train a
weak baseline model [1] and a state-of-the-art model [67],
respectively, and integrate the JIFD method to evaluate if
it leads to further improvements. We compare our method
with these two methods on three DG settings, as shown in
Table III, IV and V. The experimental results demonstrate
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TABLE V

DG PERFORMANCE COMPARISON WITH OPRI AS THE TARGET DOMAIN.
VERI-776 AND VEHICLEX ARE USED AS SOURCE DATASETS IN OUR
EXPERIMENT. THE CUMULATIVE MATCHING RATE(%) AND MEAN
AVERAGE PRECISION (MAP)(%) ARE LISTED

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 12, DECEMBER 2023

TABLE VI

PERFORMANCE COMPARISON OF DG METHODS IN SAME-DOMAIN
RE-ID SETTINGS. THE CUMULATIVE MATCHING RATE(%) AND MEAN
AVERAGE PRECISION (MAP)(%) ARE LISTED. ‘—’ DENOTES THAT
NO REPORTED RESULT IS AVAILABLE

DG Methods VeRi—776+VehicleX—Opri DG Methods VeRi-776 Opri
mAP  rank-1 rank-5  rank-10 mAP  rank-1 mAP  rank-1
Baseline[1] TMM’2019 19.8 29.3 38.2 422 Baseline[1] TMM’2019 71.3 93.3 89.6 90.3
IS-GAN[25] TPAMI’2019 27.1 37.2 47.4 523 IS-GAN]25] TPAMI'2019 71.2 92.6 57.8 62.9
Mixstyle[81] ICLR 2021 25.2 345 46.0 50.7 MetaBIN[63] CVPR’2021 46.2 80.1 _ _
OSNet-AIN[93] TPAMI'2021 21.6 30.8 41.1 45.3 Mixstyle[81] ICLR’2021 55.6 87.1 80.4 82.6
QAConv-GS[68] | CVPR’2022 | 39.6 489 61.2 66.0 OSNet-AIN[93] | TPAMI'2021 | 70.8 951 | 91.8 924
TransMatcher[67] | NIPS’2021 | 28.8  34.8 49.5 557 TransMatcher[67] | TPAMI'2021 | 592 864 | 944 949
JIFD This work | 255 354 444 48.8 QAConv-GS[68] | CVPR'2022 | 632 864 | 939 944
TransMatcher[67+JIFD 33.1 40.2 54.5 60.3 JIFD This work 46.3 82.4 _ _
TransMatcher[67]+JIFD 49.8 80.2 - -

that our method achieves high recognition accuracy and
outperforms the baseline method in terms of rank-1 and
mAP. Moreover, when JIFD is applied to TransMatcher [67],
it achieves the best recognition accuracy and improves Trans-
Matcher by 7.2% rank-1 recognition rate and 6.5% mAP score
on the VeRi—776— Opri setting. The TransMatcher [67]+JIFD
method trains TransMatcher [67] on the source domain train-
ing set r(x) of JIFD and then tests it on the unknown target
dataset. It is even ahead of the UDA method in Table III
on VeRi-776—Opri setting. But it has a limited amount
of promotion on VehicleX—Opri setting. This is because
VeRi-776 dataset is derived from real vehicle images, and
these images may contain more redundant information com-
pared to the images in the VehicleX dataset. JIFD can reduce
the redundant information in images through image-level dis-
entanglement and provide a more effective training strategy
for other methods.

D. Comparison With State-of-the-Arts

First of all, we evaluate our JIFD method in single-source
DG settings, which is shown in Table III and IV. Our method
is compared with various recent state-of-the-art DG re-ID
methods [25], [63], [67], [68], [81], [93]. For DG re-ID
task, a limited number of works can report performance
on VeRi-776—Opri and VehicleX—Opri, and even those
methods are based on domain adaptation [19], [96]. Secondly,
we aim to improve the generalization ability of deep re-ID
models in unseen domains using data from multiple source
domains (see Table V). Finally, we compare our method with
current state-of-the-art DG re-ID methods in same-domain
re-ID settings (see Table VI).

Experimental results show that the QAConv-GS [68] and
TransMatcher [67] methods can achieve the best results in the
domain generalization task. Compared with the JIFD method,
QAConv-GS formulates a triplet-based ranking learning prob-
lem within mini batches provided by the graph sampling
sampler. The TransMatcher method combines the ResNet-50
[80] with the Transformer architecture for more robust feature
representations. As a result, it has a stronger backbone network
than the baseline method. In order to further demonstrate
the effectiveness of our method, we combine the compo-
nent r(x) of JIFD with the TransMatcher method to achieve

better recognition performance. Interestingly, it can be found
from Table IIT and V: (1) Compared with the performance
of VeRi—776—Opri and VeRi-7764-VehicleX— Opri, most
methods have declined after introducing VehicleX datasets.
It can be concluded that simply increasing the amount of
data in multiple source domains may not always improve
the generalization ability of the model in unseen domains.
This is because these methods do not consider the distribution
discrepancy and relations between different source domains.
(2) Only QAConv-GS trained on VeRi—7764VehicleX still
has obvious effect improvement, even better than the UDA
method (SpCL) trained on Veri—776 in terms of rank-1. The
excellent recognition performance of QAConv-GS is due to
its effective sampling strategy. The larger the training set, the
more effective the training effect of the model is. Therefore,
we suggest that the data types and quantities of different source
domains need to be treated differently in the process of training
the models. But TransMatcher+JIFD on VeRi—776— Opri
setting can still be ahead of method QAConv-GS on VeRi-
7764 VehicleX— Opri setting. This means that the interference
caused by redundant information can significantly affect the
performance of neural networks.

From Table IV, we have the following observations. (1) Our
JIFD achieves the best overall performance on Virtual— Real,
outperforming most recently published methods by a clear
margin. (2) At the same time, in order to compare the
performance gap between the current UDA and DG methods,
we also conduct comparative experiments on VehicleX— Opri
and VeRi—Opri using the state-of-the-arts UDA methods.
From the analysis of experimental results, UDA methods are
still ahead of DG methods. (3) It is clear that OSNet-AIN
achieves the worst experimental results on the target datasets
due to only using the Virtual dataset (VehicleX)-it’s even
inferior to the baseline method in terms of rank-1 and mAP.

Noteworthy, Table VI shows that none of the cur-
rent DG methods can improve generalization performance
while maintaining recognition performance in supervised set-
tings. For the baseline [1] and OSNet-AIN [93] methods,
enhanced performance on a single domain does not guar-
antee improved generalization, as it may rely on redundant
or pseudo-correlated features and compromise the overall
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TABLE VII

DG PERFORMANCE COMPARISON WITH OPRI AS THE TARGET DOMAIN.
TRAINING ON ONE PART OF JIFD AND TEST ON ANOTHER PART. THE
CUMULATIVE MATCHING RATE(%) AND MEAN AVERAGE
PRECISION (MAP)(%) ARE LISTED

Baseline Method VeRi-776—Opri VehicleX —Opri
Training Test mAP  rank-1  rank-5 | mAP  rank-1  rank-5
T T 183 27.8 35.9 19.7 29.1 38.9
T g(x) 12,5 20.4 27.9 15.5 233 328
T r(x) 11.7 18.8 26.6 109 16.6 254
r(x) T 232 332 43.3 20.6 30.6 39.8
r(x) g(x) 14.9 23.0 31.1 16.3 24.1 33.6
r(x) r(x) 23.6 333 43.7 24.7 332 44.9
g(z) T 16.3 25.7 329 115 19.9 26.7
g(x) g(x) 15.8 242 33.0 16.7 25.5 34.8
g(z) r(x) 7.1 11.7 18.0 9.1 15.6 229
TABLE VIII

ABLATION STUDIES OF OUR PROPOSED JIFD ON
INDIVIDUAL COMPONENTS

Methods VeRi~776— Opri
mAP  rankl rank5 rank10
Lyge + Lia 23.9 34.1 43.6 47.7
Lyae + Lia + Leam 24.6 34.5 44.6 48.7
Lyge + Lig + Leam + L1 (Ours) 253 35.0 45.5 49.9
Ours+RandomErase[ 108] 22.6 32.5 42.6 46.7
Methods VehicleX—Opri
mAP  rankl rank5 rank10
Lyae + Lia 22.1 315 42.0 459
Lyge + Lia + Leam 224 31.7 42.3 46.5
Lyae + Lig + Leam + Lz (Ours) 23.0 32.8 43.1 47.4
Ours+RandomErase[ 108] 21.0 30.1 40.3 445

generalizability. For high-resolution and fine-grained Opri
datasets, IS-GAN may fail to disentangle identity-related
and -unrelated features from truck images. This is because
it could not effectively prevent from introducing redundant
information caused by generated images with poor qualities.
For JIFD, although our proposed method discards a large
amount of information in the original image to improve
generalization performance, it is unable to prevent the loss
of domain information and does not yield satisfactory perfor-
mance in supervised experiments. Therefore, it is crucial not
only to enhance the performance of re-ID methods within a
single domain but also to ensure their effectiveness in domain
generalization.

E. Ablation Studies

To demonstrate the effectiveness and contribution of each
component of the JIFD, we perform comprehensive ablation
studies on VeRi—776— Opri in Table VIII. We use the combi-
nation of the two loss functions L,,. and L;; as the baseline
experiment to compare the influence of other loss functions
on the results. We evaluate our complete model against three
simplified versions, where we remove one component from
each version. From the results, we also observe that the
random erasing strategy [108] has a negative impact on the
generalization performance of JIFD. Fig.10 and Fig.11show
the visualization results after image-level disentanglement
through the JIFD method.
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Fig. 10. Image-level disentanglement results from JIFD on VeRi—776— Opri.

In Fig.9, we feed different inputs to the ID branch to see
whether JIFD could provide further performance improve-
ments. By adjusting the values of @ and B to control the
ratio between the original image x and r(x) generated by the
VAE network, the experimental results show that the neural
network will deteriorate the generalization information with
the increase of input redundant information. This also verifies
our conjecture that the proposed method constitutes an infor-
mation bottleneck. The information bottleneck here means the
neural network uses only a small amount of information in the
image to complete the re-ID task. The presence of redundant
information in the input image will hinder the generalization
performance of the convolutional neural network.

FE. Extended Experimental Investigation

To illustrate how g(x) and r(x) affect the performance of
the baseline method, our proposed JIFD method divides the
original image x into two parts g(x) and r(x), where r(x) only
accounts for a small part of the information of the original
image x. We combine the baseline method [1] to train on one
part of JIFD and test on another part, as shown in Table VII.
Experimental results show that baseline can significantly
improve the recognition performance on the settings of VeRi—
776(r (x))— Opri(r(x)) and VehicleX(r (x))— Opri(r(x)). Out
of the three training strategies (x, g(x) and r(x)) that we
used, it appears that r(x) has the beneficial impact on the
domain generalization task. This indicates that our method
is somewhat interpretable from an information bottleneck
perspective.
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VeRi—T776
Fig. 11.
respectively.
(x) g(x)
Baseline
Ours
@

Fig. 12. Illustration of the activated regions for the car and truck. Visualiza-

tion results of grad-CAM [40] based on baseline [1] and JIFD methods are
shown in the second and third lines. The strong activation regions are marked
in red. Columns (a), (b) and (c) show the same-domain visualization results
of VeRi—776. When tested on opri(x, r(x), g(x)), VeRi—776(x) is used as the
source dataset, as shown in columns (d), (e) and (f). JIFD shows the responses
(i.e. heatmaps) of the ID encoder Ej;.

In addition, we investigate the mechanism behind the effec-
tiveness of our approach by analyzing the learned feature
representations through visualization. Through these intuitions
gained from the visualization regions of the car and truck
in Fig.12, our method can still achieve better generalization
results through small reconstruction error and reduce the inter-
ference of redundant information in the source domain images.
It further explains the positive effectiveness of information
bottleneck for DG task. From Fig.12 (d), (e) and (f), we can
see that compared to the baseline method, our method focuses
only on the most discriminative truck regions when applied to
the domain generalization task. The baseline method tends to
focus on the global features of the truck and does not perform
the DG task well. This is because trucks of the same type
and color may be highly similar in appearance. The shared
but redundant features of these trucks may interfere with
discriminant and ID-related features. So how to utilize the
limited discriminant area is extremely important for vehicle
re-ID task.

VehicleX

More visualization results on VeRi—776 and VehicleX. When tested on Opri, VeRi—776 and vehicleX are used as the source dataset in our experiment

G. Limitations and Future Work

We notice that as image-level disentanglement is only
evaluated based on reconstruction accuracy, it could not be
able to fully retain vehicle identity information while reducing
redundancy without other supervised information. So it is
unable to prevent the loss of domain information and does
not yield satisfactory performance in supervised experiments.
Table VI shows the performance comparison and confirms
the claim. Moreover, vehicles of the same make and color
have very similar appearances, which can also be regarded as
redundant information. Such redundant information is difficult
to isolate effectively through classification networks. The anal-
ysis does not indicate any benefits from classification networks
for image-level disentanglement. In future work, we envision
creating and exploiting utilizing vehicle attribute information
as a supervision way [109] to guide the VAE network to
achieve better image-level disentanglement.

V. CONCLUSION

In this paper, we present a novel idea for tackling the task of
domain generalization in vehicle re-ID. Our proposed method
performs dual disentanglement at the image-level and feature-
level, leveraging the perspective of information bottleneck to
achieve the goal of domain generalization. To highlight the
significant difference between current re-ID public datasets
and specific scenarios in the real world, we collect frontal
images of trucks from the highway and present a large-scale
and challenging Opri dataset, which we combine with existing
public datasets to provide a wealth of domain generalization
experimental results. Moreover, our proposed JIFD method can
be used as a plug-and-play training strategy and combined
with other state-of-the-art methods to improve performance.
Extensive comparative experiments demonstrate the effective-
ness of our approach. Future research will aim to enhance the
effectiveness of domain generalization while maintaining the
performance of a single domain.
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