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Abstract—This work focuses on the task of Video-based
Visible-Infrared Person Re-Identification, a promising tech-
nique for achieving 24-hour surveillance systems. Two main
issues in this field are modality discrepancy mitigating and
spatial-temporal information mining. In this work, we propose
a novel method, named Intermediary-guided Bidirectional
spatial-temporal Aggregation Network (IBAN), to address both
issues at once. Specifically, IBAN is designed to learn modality-
irrelevant features by leveraging the anaglyph data of pedestrian
images to serve as the intermediary. Furthermore, a bidirectional
spatial-temporal aggregation module is introduced to exploit the
spatial-temporal information of video data, while mitigating the
impact of noisy image frames. Finally, we design an Easy-sample-
based loss to guide the final embedding space and further improve
the model’s generalization performance. Extensive experiments
on Video-based Visible-Infrared benchmarks show that IBAN
achieves promising results and outperforms the state-of-the-
art ReID methods by a large margin, improving the rank-
1/mAP by 1.29%/3.46% at the Infrared to Visible situation,
and by 5.04%/3.27% at the Visible to Infrared situation.
The source code of the proposed method will be released at
https://github.com/lhf12278/IBAN.

Index Terms— Visible-infrared person re-identification, bidi-
rectional spatial-temporal aggregation, anaglyph data, modality
discrepancy.

I. INTRODUCTION

ERSON re-identification (RelD) aims at matching person
data acquired from multiple disjoint cameras. It plays an
important role in intelligent video surveillance and has seen
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Fig. 1. Comparison between visible-infrared images and their anaglyph
images. (a) T-sne visualization results in embedding space, ‘4+’ means the
visible data, and ‘e’ means the infrared data. Different colors represent
different IDs. (b) Images of Visible-Infrared data and corresponding anaglyph
data. The images with yellow boundaries are original visible data and their
corresponding anaglyph data; The images with green boundaries are original
infrared data and their corresponding anaglyph data. The anaglyph data are
generated by an anaglyph operator.

enormous progress in recent years. The basic idea of recent
studies is to seek a discriminative embedding space, in which
features from the same ID have larger similarities. Most recent
studies mainly focus on the image-based single-modality Re-
ID [1], [2], [3], [4], [5], [6], [7], which captures the data via
visible cameras and extracts discriminative features within a
single image. Although impressive results have been made
in recent years, there are still two obstacles that limit its
application in 24-hour intelligent video surveillance. First,
the visible cameras cannot capture clear data in a dark
environment. Second, image-based feature extraction cannot
effectively tackle some challenging issues, such as pose,
appearance similarity, occlusions, and frame misalignment. An
alternative solution to the above two problems is Video-based
Visible-Infrared Person Re-Identification (VVI-RelD) [8],
which leverages the visible and infrared data simultaneously
and extracts discriminative representation within a video clip.

Two main challenges in VVI-RelD are modality discrepancy
mitigating and spatial-temporal information mining. Modality
discrepancy mitigating has been widely studied in Cross-
Modality Person RelID. Examples include image translation-
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Fig. 2. Video clips with noisy frames.

based methods [9], [10], [11] and modality-invariant feature
learning-based methods [12], [13], [14], [15]. Though driven
by different motivations, these approaches can be thought
of as mitigating modality discrepancy in different learning
states. Spatial-temporal information mining is an inevitable
problem in video-based vision tasks, such as ReID and
action recognition [16], [17]. Approaches to this issue mainly
differ in how to aggregate the features of frames in a video
clip. Examples include temporal information aggregating-
based methods [18], [19], [20] and complementary information
mining-based methods [21], [22]. The former often regard
each video clip as a directed sequence and introduces an RNN-
based module or a 3D-CNN-based module to aggregate the
features of all frames in order to extract temporal features.
Differently, the latter aims at extracting discriminative features
by exploring the interrelationship among unordered frames.
Though promising results have been achieved on both Cross-
Modality ReID and video-based RelD, how to solve the above
two challenges simultaneously via a unified framework is still
an open problem.

To this end, we present an Intermediary-guided Bidirec-
tional spatial-temporal Aggregation Network (IBAN) for VVI-
ReID. IBAN is inspired by an observation that color is
one of the main elements causing the discrepancies between
two modalities [12], while anaglyph images, generated from
visible and infrared images, can serve as an intermediary to
mitigate modality discrepancy. As shown in Figure 1, the
T-sne visualization results of features in embedding space, the
distribution gap between infrared features and visible features
is large, while the features of heterogeneous anaglyph images
with the same ID have been aggregated in embedding space.
An intuitive idea is replacing the original infrared and visible
images with anaglyph images. Nevertheless, the generalization
performance is generally poor on unseen IDs due to the
limited discriminative information of anaglyph images. From
this perspective, we leverage anaglyph images to serve as
an intermediary that mitigates modality discrepancy and
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guides the model to extract modality-irrelevant features. This
mechanism differs IBAN from existing modality generation-
based Cross-Modality RelD methods [23], [24], [25], where
auxiliary modality is generated from only the visible images,
and modality discrepancy mitigating is conducted only in the
final feature space.

Furthermore, IBAN introduces a novel bidirectional spatial-
temporal aggregation module to exploit the spatial-temporal
information of video data, while mitigating the impact of noisy
image frames. The intuition behind this module is two-fold.
First, as shown in Figure2, not all frames in a video sequence
are beneficial for feature learning. The effect of noisy frames
with detection errors or heavy occlusions should be weakened,
while the effect of informative frames with partial occlusions
or pose changes should be strengthened. Second, video data
is bidirectional, and both forward direction (the arranged
order of video frames) and backward direction (opposite to
the forward direction) can provide useful spatial-temporal
information [26], [27] To this end, an adaptively weighted
mechanism is used in the bidirectional spatial-temporal
aggregation module, which leverages bi-directional spatial-
temporal information to assign a specific weight for each
frame.

Finally, we pay attention to the final embedding space.
The triplet loss has been widely used to guide embedding
space learning in recent RelD approaches including Cross-
Modality RelD. In practice, however, its effect in mitigating
modality discrepancy is limited and even inverted. Triplet
loss enforces that an anchor is closer to all other samples
from the same ID than it is to any sample from the
other ID. That is, it considers only the ID discrepancy and
ignores the modality discrepancy between different identities.
Consequently, different IDs are apart from each other, and one
or multiple IDs can be considered a fake sub-modality. From
this perspective, we hypothesize that the triplet loss should
work on the condition that all samples locate in a common
embedding space. To this end, we design an easy sample-
based loss to assist the triplet loss. For example, given an
anchor from modality M, we first seek its easy sample from
another modality M», i.e., a sample with the largest similarity
with the anchor. Then, we attract the residual samples from
the modality M to close the easy sample. Easy sample-based
loss is complementary to the intermediary-guided module,
and they handle modality discrepancy in different feature
levels.

In practice, IBAN integrates the Intermediary-guided feature
learning module, bidirectional spatial-temporal aggregation
module, and easy sample-based loss into a unified framework.
Extensive experiments on cross-modality ReID show that
without other bells and whistles, it achieves state-of-the-
art results and provides a large advantage over existing
ReID methods including video-based and image-based cross-
modality methods. The main contributions of this work are as
follows:

« We provide a novel method IBAN for VVI-RelD, which
handles modality discrepancy in different feature levels
and mines spatial-temporal information from different
directions.
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« IBAN leverages anaglyph data of the pedestrian images
to serve as the intermediary, guiding the model to extract
modality-invariant features. Besides, it achieves feature
aggregation of frames via exploring the bidirectional
spatial-temporal information of video data, while miti-
gating the impact of noisy image frames.

« We conduct extensive experiments to validate the
effectiveness of IBAN, and the experimental results
demonstrate that it significantly outperforms state-of-
the-art competitors on the cross-modality RelD task.
In addition, we provide a detailed discussion of the
modules of IBAN via ablation studies.

The rest of this paper is arranged as follows. We review the
related works in Section II, and provide the details of IBAN in
Section III. In Section IV, we report the experimental results
of IBAN on the VVI-RelD task. Finally, we conclude this
work and discuss the potential improvements in Section V

II. RELATED WORK

The main challenges faced in person RelD include pose
variations, occlusions, illumination changes, and large intra-
class variations caused by various camera views. A large
number of approaches have been developed to address
these challenges [28], [29], taking a comprehensive review
beyond the scope of this work. Here, we focus only on the
video-based person Re-ID and visible-infrared cross-modality
person Re-ID.

A. Video-Based Person RelD

Video-based person RelD aims at matching the same ID
from a gallery set of video clips, which is a powerful approach
for tackling the problems of pose variations and occlusions in
RelD. And, efficiently exploiting spatial-temporal information
while generating discriminative features is pivotal for its
success. The methods for processing video data can be
roughly divided into two categories: temporal information
aggregating-based methods and complementary information
mining-based methods. The former regards each video clip
as a directed sequence and introduces a temporal information
mining module to aggregate the features of all frames, such as
LSTM [18], [22], [30] and 3D-CNNs [19], [20]. Differently,
the latter assumes that the frames of a video clip are
unordered but complementary. To mine the complementary
information, it often leverages an attention mechanism
[31], [32], [33] or Graph Convolutional Network (GCN)
[21], [34], [35] to explore the interrelationship among different
frames. In practice, RNN-based modules are beneficial for
learning temporal features, but they always neglect the
importance of spatial clues. The networks used in 3D-CNN
and GCN are often complex, computationally expensive, and
difficult to optimize, which limits their application in tackling
real-world challenges.

In addition, a number of temporal information mining
methods have been proposed for other video-based vision
tasks, such as action recognition tasks [16], [17], [36], [37].
However, all of them ignore two significant issues. First,
video data is bidirectional, and both the forward direction
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(the arranged order of video frames) and backward direction
(opposite to the forward direction) can provide useful spatial-
temporal information. Second, not all frames in a video clip
are equally beneficial for feature learning. The bidirectional
problem is first exploited in [26], and then used in [27].
But, both of them ignore the frame difference of the video
clip. In this work, we address these two issues simulta-
neously using a bidirectional spatial-temporal aggregation
module, which exploits the spatial-temporal information of
video data, while mitigating the impact of noisy image
frames.

B. Visible-Infrared Cross-Modality Person RelD

Visible-infrared cross-modality person Re-ID [38] aims
to achieve person matching across two different modalities,
which can significantly improve the performance of the model
in poor illumination environments. Meanwhile, it takes the
researchers an additional issue, i.e., modality discrepancy
mitigating. As mentioned above, the methods for this issue
mainly include image translation-based methods [9], [10], [39]
and modality-invariant feature learning-based methods
[14], [15], [40], [41]. The former aims at mitigating modality
discrepancy at the image level via generating data using
Generative Adversarial Network (GAN) or other approaches.
AlignGAN [10] is one of the pioneers, which generates
fake-infrared images by generators and feeds them into a
weight-share network with real-infrared images. Meanwhile,
a discriminator is used to distinguish whether the input
infrared images are real or not. Through the above min-max
two-player game, sufficiently realistic fake-infrared images
can be generated to mitigate the modality discrepancy.
To make full use of the data from both of the modalities [11],
several multi-generation-based methods have been developed.
For example, GECNet [42] uses the gray data generated
by visible data to enhance the infrared data, and then, fake
visible data is generated using enhanced infrared data through
a colorization Siamese GAN. In this way, the connection
between visible data and infrared data is enhanced in the three
times conversion-generation processes. Besides, considering
that the inconsistent convergence direction between the
generator and discriminator will lead to optimization
puzzles, several methods propose to replace generation with
transformation, transforming original images to a more
appropriate media modality. For example, [42] employs gray
images to fully replace visible images and infrared images
for feature learning so that useful information can be retained
furthest. Reference [25] mitigates modality discrepancy in the
final feature space and pushes the features of heterogeneous
images to close the syncretic features generated via the
syncretic modality generative module. Differently, modality-
invariant feature learning methods reduce the distribution gap
between different modalities in feature space. For example,
Ye et al. [43] leverage an elaborate dual-stream network to
map features of different modalities into a common higher-
dimensional embedding space. Shuai et al. [44] align the
features of different modalities by combining local features
and global features. Fu et al. [45] introduce a dual alignment
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An overview of our IBAN framework. First, we leverage an Intermediary-Guided module (IG) to mitigate the modality discrepancy. Second,

we design a Bidirectional Spatial-Temporal Aggregation module (BSTA) to mine spatial-temporal information of video data. Finally, we introduce an additional

Easy-Sample-Based (ESB) loss to constrain the final embedding space.

network(DAN) to solve the visible-infrared cross-modal
cross-domain person Re-ID problem. Wang et al. [46] embed
modality mitigation modules in a two-stream network to
map different modal features to the same space. Meanwhile,
some methods propose to mitigate modality discrepancy
by strengthening the higher-order relations that are robust
to modality variation, such as the structure of the human
body [47].

It is worth noting that the above two approaches are not
mutually exclusive, and many cross-modality works tend to
combine them for performance improvement. Reference [48]
leverages image transformation to mitigate the modality
discrepancy of input data and design a shared-backbone-
based network to align features. Reference [49] alleviates the
modal differences via pixel-level mixing while adjusting the
relative distance across multi-modality through a Dynamic
Center Aggregation(DCA) loss. The method proposed in
this paper also follows this idea, but differs from existing
approaches [25], [42], we mitigate the modality discrepancy
in different feature levels. The details will be presented in the
next section.

III. PROPOSED METHOD
A. Overview

In this work, we propose a novel method, named
Intermediary-guided Bidirectional spatial-temporal Aggrega-
tion Network (IBAN), to tackle the issues of modality dis-
crepancy mitigating and spatial-temporal information mining
in a unified framework. An overall pipeline of IBAN is
presented in Figure 3, where the backbone denotes a dual-
stream widely used in previous Visible-Infrared RelD [8].
Algorithm 1 describes the procedure of IBAN in detail. In the
next subsection, we will elaborate on each step of IBAN.

Algorithm 1 An Overview to Our Proposed Method IBAN

Input: A mini-batch that consists of b visible video clips
{X"}, and infrared video clips {X'};

while Not Converged do

Step.1: #Anaglyph data generation;

AV = A(XV) and A" = A(XY);

Step.2: #Feature extraction;

FV = N1 (XY).F = N (X');

A = N7 (AY), AT = N (AD);

Step.3: #Feature discrepancy mitigation;

FU = IG(F?, A?, A)), F' = IG(F', A, AV);

Step.4: #Spatial-temporal aggregation;

e’ = BSTA(F?), ¢ = BSTA(F) ;

Step.5: #Calculate loss and BP;

L=2Lip~+ MLrri +rLesp + A3Ler

Update the model using backpropagation.

end

B. IBAN Framework

Step#l Anaglyph Data Generation: Given two Ccross-
modality video clips X" = {x},xj,...,x} and X =
{x’l,xé,...,x,’(}, IBAN first generates 'thellr anaglyph. data
AV = {a{,aj,...,a}} and A' = {a},a;,...,a} via an
anaglyph operator A. Specifically, for each frame a" or a’,
we have

ali, ) =D D xGi+m, j+mAm,n) +k
m n
where A denotes a edge detection operator, a(i, j) denotes the
(i, j)-th pixel of anaglyph image a, k is an offset value.
Step#2 Feature Extraction: Subsequently, we extract the
features of both visible-infrared data and anaglyph data via two

Authorized licensed use limited to: Kunming Univ of Science and Tech. Downloaded on March 22,2024 at 06:29:28 UTC from IEEE Xplore. Restrictions apply.



4966

3D-Cross-
Attention

7

3D-Cross-
Attention

Backbone

L]

Fig. 4. An overall pipeline of IG module in IBAN.

parallel part-shared dual-stream networks Nj and A>. That is,
F' = Mi(X"), F' = Mi(X"), ©)
and
A" = N3 (AY), AT = Np(4) 3)

where FV (F') and AV (A?) are extracted features of original
data and anaglyph data respectively. Then we propose to
leverage an Intermediary-Guided module (IG) to mitigate the
modality discrepancy (between FV and F/).

Step#3 Modality Feature Discrepancy Mitigation Using IG:
Inspired by the learning behavior of humans, we propose to
mitigate the modality discrepancy by setting a proper reference
for the network. Figure 1 shows that the anaglyph data has
two characteristics compared with the original Visible-Infrared
data. First, the modality discrepancy of the anaglyph data
is small. Second, anaglyph data loses some discriminative
information. Hence, the basic idea of Intermediary-guided
module (IG) is leveraging the features of anaglyph images (A",
A') to refine the features of visible-infrared images (F', F),
reducing the gap between F' and F'. Figure 4 illustrates
the overall pipeline of the IG module. Next, we provide
the details of IG. Suppose FV = {f/,f,... f!} and F' =
{f"l,f’i, ..,f’,;} are feature maps of the original video clips
XV and X', respectively, where k is the number of frames
in each video clip. Correspondingly, A* = {a},a},...,a}}
and A’ = {a},a), ..., a;} are feature maps of the anaglyph
data. IG uses the 3D Cross-Attention (CA) mechanism to
strengthen the similar information between FV(F') and AV(A").
Specifically, for each f; we have

f = CA(fx, ap)
= W(Softmax(fy - a] ) ® ag) + fi, 4)
yvhere ® is dot product, W are learnable parameters, and

fi denotes the refined feature map that contains modality-
irrelevant information of f;. Note that we omit the superscript
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Fig. 5. An overall pipeline of BSTA module in IBAN.

v and i, which demonstrates that IG works on both f” and f'.
Further, we use average pooling to translate each feature map
as a vector.!

A potential problem of Eq. (4) is that the modality-
irrelevant feature learning procedures of different modalities
are separate, and it does not consider the modality
discrepancy between anaglyph images with partial modal-
specific information. To this end, we introduce a cross-
reconstruction constraint to reduce the discrepancy between
A’ and AV. Specifically, given a pair of features a; and af{
from the same ID, we expect that a; and a}; can reconstruct
each other. Mathematically, the cross-reconstruction constraint
is:

bxk bxk
Lo =D llaf —R@Dl2+ D llal — R@)l, (5
=1

=1

where b is the size of the mini-batch, and R denotes the
reconstruction network that consists of a set of convolution
layers. During training, the gradients of the original features
a’ and a! are detached. Subsequently, we input the refined
features F* and F' into a Bidirectional Spatial-Temporal
Aggregation (BSTA) module, obtaining the final embedding
of each video clip.

Step#4 Bidirectional Spatial-Temporal Aggregation Using
BSTA: An advantage of VVI-RelD is that the video data
can provide rich temporal information(e.g., pedestrian gait
characteristics), enhancing the robustness of the appearance
feature. Suppose F = {f}, f, ..., fi} is the refined feature of
a video clip.? Existing video-based ReID methods often first
use an LSTM network to extract its temporal information, and
then introduce a Temporal-Attention (TA) module to aggregate
them. Finally, a mean operation is conducted to obtain the

1To avoid confusability of notation, we also use f'k to denote the generated
feature vector.

2If not noted otherwise, we omit the superscript v and i in the rest of this
work.
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embedding vector. Specifically,

f, = LSTM(f1, b, ..., B
f, = TA®,, f) = FC(f,) @ f + B
£, (6)

where f; denotes a sequence-level temporal feature, fi denotes
a frame-level spatial-temporal aggregation feature, m denotes
a sequence-level spatial-temporal aggregation feature, and FC
is a fully connected network that consists of a series of ReLU
and Sigmoid layers.

Although such a mechanism is useful for mining and
aggregating temporal information of data, it ignores two
significant issues. First, video data is bidirectional, and both
forward direction (the arranged order of video frames) and
backward direction (opposite to the forward direction) can
provide useful spatial-temporal information. Second, not all
frames in a video clip are equally beneficial for feature
learning. To this end, in this work, we propose a Bidirectional
Spatial-Temporal Aggregation module (BSTA). An overall
pipeline of BSTA is presented in Figure 5. Specifically,
to address the first issue, we propose to extract the bidirectional
spatial-temporal information of data. That is,

fi1 = LSTM(fy1, f2, ..., f0)

f;o = LSTM (£, fx—1, ..., 1) (7N
where f',l denotes the forward temporal feature and f,z denotes
the backward temporal feature. To further address the second

issue, we leverage f;; and f;, to assign a specific weight for
each frame. Specifically,

m mean(f'l,f'z, el

Wi = (cos(ty, £1), coshr, £1), . ..., cos(fy, 1))

W, = (cos(fy, f2), cos(fa, fi0), . . ., cos(fe, £2))
Wi +W,

W= ——. ®)

where cos(e) denotes the cos similarity function. Both
cos(fk, f}l) and cos(f'k, f}z) reflect the importance of the k-
th frame. The final weighted vector W = {wj, wa, ..., wi}
is the mean of W; and W,. Subsequently, we use the same
TA module to aggregate the spatial-temporal information and
generate a series of frame-level spatial-temporal aggregation
features {f’l,fl, .. .,fk}. The final sequence-level embedding
vector of a video clip is obtained by using a weighted mean
mechanism, i.e.,
w1f1 + wzfz +..., wkf.k

m = . 9

. ©))

Finally, BSTA introduces a Batch Normalization (BN) layer
to normalize the embedding vectors of the current mini-batch

of size b, and obtain the final embedding vectors:

E = BN(M),

(10)

where E = (eq,e3,...,¢ep) and M = (m;, my, ..., mp). And,
E is guided by an objective function discussed below.
Step#5 Loss Calculation and Back Propagation (BP): In
general, triplet loss is used to guide the network to learn
discriminative embedding. It maximizes the distance between
anchor e and its negative instance e”, both of which have
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Fig. 6.  Motivation of using Easy-sample-based (ESB) loss rather than
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different IDs, and minimizes the distance between the anchor
and its positive instance e”, both of which have the same ID.
Mathematically, it is formulated as:

b

Lrri=~7 D [0,m+ e —e’l2— ll¢f — e[y (11)
i=1

1
b
where m is a predefined margin. Although triplet loss has
achieved great success in existing person ReID methods,
including cross-modality ReID, we find that it considers
only the classification differences and ignores the modality
discrepancies between different identities. Consequently, the
negative samples are often apart from the anchor, causing
modality separation between different IDs. That is, many
sub-modalities between different IDs will be generated. For
labels of the training data and test data are unshared, sub-
modalities cannot maintain identity consistency during the
testing phase. For example, the sub-modality of person A may
be aligned with the sub-modality of person B. As a result, the
performance of the model is degraded in the test data.

Furthermore, in order to make the network learn better
embeddings, previous works propose to use hard-positive and
hard-negative samples only for relationship mining and neglect
the fact that the easy samples are most suitable for cross-
modality retrieval tasks and contain the worthiest information
to be learned. To this end, in this work, we introduce an
additional Easy-Sample-Based (ESB) loss to assist the triplet
loss. Particularly, we expect that the ESB loss can reduce
the modality gap between different IDs, while triplet loss can
improve the discrimination of the embeddings.

As shown in Figure 6, given an anchor from modality M,
ESB first seeks its easy sample from another modality M>,
i.e., a sample with the largest similarity with the anchor,? and
then attracts the residual samples from the modality M, to
close the easy sample. Obviously, the easy sample has minimal
modality discrepancy with heterogeneous data, while the hard
sample has maximum modality discrepancy. And, enforcing
the residual samples from M to close the hard samples will
enlarge the modality discrepancy. Besides, a potential problem
is that the hard sample may be outliers. Mathematically, ESB
loss is formulated as:

b/2 bJ2 b/2 b/2
Lesh= Z Z mse(ep,, € (e}, )+ Z Z mse(e, , £(e},)),
bi=1by=1 by=1by=1

12)

3we ignore the ID differences between instance.
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where £ (ezl) denotes the easy sample of ezl, sampled from
the visible modality, and vice versa. That is,

E(e},,) = argmaxcos(e}. €}, ).t =1,2,....b/2, (13)

and

E(e}jz) = argmaxcos(eﬁ, e}jz),t =1,2,...,b/2, (14)

The gradient of £(e) and £(e) are detached during training.
ESB loss breaks the modal barriers between different IDs,
and assists the triplet loss to learn modality-irrelevant and
discriminative embedding vectors. In other words, it is
complementary to the intermediary-guided module, and they
handle modality discrepancy in different feature levels.

Taking all modules mentioned above into consideration,
we obtain the overall loss of IBAN, as follows:

L= »CID + )\l»CTri + )\2£esb + )L3£cr» (15)

where A1, A» and A3 are hyper-parameters, L;p is the cross-
entropy loss. During training L£;p, L7,; and L.z, work on the
visible data, infrared data, and anaglyph data, L., works only
on the anaglyph data. Besides, more experiments of hyper-
parameters analysis can be found in Fig. 7.

IV. EXPERIMENTS
A. Dataset and Evaluation Protocols

In this work, all experiments are conducted on
HITSZ-VCM [8], a unique video-based cross-modality
re-identification dataset. HITSZ-VCM includes 251452
RGB images and 211807 IR images of 927 IDs captured by
12 non-overlapped cameras. Each track of a person consists of
24 consecutive frames, and all images are divided into 11785
RGB tracks and 10078 IR tracks, respectively. We follow [8]
and divide the VCM-HIT into two parts: a training set and a
test set. The training set contains 232, 496 images of 500 IDs
and 11, 061 tracks, while the test set contains 230, 763 images
of 427 IDs and 10, 802 tracks. Before training, we resize all
images to the size of 288 x 144 and use random cropping
and random flipping to achieve data augmentation.

Besides, we use rank-k and mAP (mean Average Precision)*
to evaluate the performance of IBAN, both of them are widely
used in cross-modality person re-identification. Suppose p (k)
is the precision at cut-off k in the returned list, /(k) is an
indicator function which is equal to 1 if the image at rank &
is a correct image, zero otherwise. We have

D1 PR * I (k)
number of correct images

(16)

where n denotes the number of retrieved images. Further, the
mAP is defined as:

1 q
mAP = — ZAPi, (17)

i=1

where g denotes the total number of queries.

4https://en.wikipeclia.org/wiki/Evaluation_measures_(information_rc:trieval)
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Fig. 7. Hyper-parameters Analysis of IBAN.

B. Experiment Setup

All experiments are implemented on a single RTX3090
GPU. Optimization is performed using an SGD optimizer.
The learning rate is initialized as 0.1 and adjusted linearly
by the warrior-up strategy during the first 10 epochs. Besides,
we decrease it to 0.01 and 0.001 at 35-th and 80-th epochs,
respectively. The weight decay is 0.0005, and batch size is
16 (each mini-batch includes 4 IDs and each ID includes
4 video clips of 2 modalities). Each training is run over
200 epochs.

C. Hyper-Parameters Setup

There are three main hyper-parameters in IBAN, i.e., Aj,
A2, and A3. In practice, we first determine their variation range
by observing the values of corresponding loss terms. Second,
we select the hyper-parameters via grid search. Besides,
we find that the network mainly focuses on the shallow
features of data (such as environment, posture, clothing, and
other large-area features) at the early training stage. Hence,
the reconstruction loss used in the IG module will prevent
the network from extracting discriminative features, resulting
in the collapse of network performance. To avoid this issue,
we introduce the reconstruction loss in the interim of training.
Experimental results demonstrate that the performance of
IBAN 1is not sensitive to the epoch of introducing the
reconstruction loss. Hence, we fix it as 40. That is, A3 =
0 when epoch< 40. In Figure7, we report the performance
of IBAN with different parameter configurations of iy, Az,
and A3. We observe that the trends of visible-to-infrared
and infrared-to-visible are consistent on all hyper-parameters.
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TABLE I
COMPARISON WITH SEVERAL STATE-OF-THE-ART PERSON ReID METHODS ON HITSZ-VCM

Method Venue Infrared to Visible Visible to Infrared
rank-1 | rank-5 | rank-10 | rank-20 | mAP rank-1 | rank-5 | rank-10 | rank-20 | mAP
TCLNet ECCV’20 48.32 64.44 72.03 78.34 36.38 52.13 68.60 75.29 80.74 38.52
DDAG ECCV’20 54.62 69.79 76.05 81.50 39.26 59.03 74.64 79.53 84.04 41.50
LbA ICCV’21 46.38 65.29 72.23 79.41 30.69 49.30 69.27 75.90 82.21 32.38
MPANet CVPR’21 46.51 63.07 70.51 77T 35.26 50.32 67.31 73.56 79.66 37.80
VSD CVPR’21 54.53 70.01 76.28 82.01 41.18 57.52 73.66 79.38 83.61 43.45
CAJL ICCV’21 56.59 73.49 79.52 84.05 41.49 60.13 74.62 79.86 84.53 42.81
MITML CVPR’22 63.74 76.88 81.72 86.28 45.31 64.54 78.96 82.98 87.10 47.69
IBAN* (ours) ~ 62.70 | 76.27 | 81.65 85.41 47.06 | 67.05 | 79.70 83.86 87.83 | 49.07
IBAN (ours) ~ 65.03 | 78.34 82.98 87.19 | 48.77 | 69.58 | 81.51 85.43 88.78 50.96
TABLE II
ABLATION STUDY OF THE COMPONENTS IN IBAN
Method Infrared to Visible Visible to Infrared
rank-1 | rank-5 | rank-10 | rank-20 | mAP | rank-1 | rank-5 | rank-10 | rank-20 | mAP
Baseline 58.05 | 72.86 | 78.80 8349 | 43.14 | 6346 | 7688 | 81.94 8647 | 45.45
Baseline+IG™" 59.27 73.65 79.06 83.62 44.14 | 65.29 78.60 82.90 87.12 47.09
Baseline+IG 61.04 | 75.04 | 8041 85.10 | 45.61 | 66.33 | 79.00 | 83.19 87.08 | 47.97
Baseline+BSTA 59.71 74.56 80.06 84.90 43.27 | 65.15 78.21 83.02 87.29 45.57
Baseline+ESB 61.65 | 7504 | 80.04 8453 | 44.93 | 6554 | 7851 | 83.51 8749 | 47.43
Baseline+IG+ESB+BSTA~? 64.20 77.07 81.89 86.15 47.89 68.39 81.09 85.10 88.06 50.18
Baseline+IG+ESB+BSTA ! 61.63 75.68 81.06 85.93 45.50 | 66.23 79.70 84.11 87.96 47.85
Baseline+IG+ESB+BSTA— @ | 63.55 | 76.66 | 82.00 86.41 | 47.29 | 6741 | 7947 | 83.84 87.25 | 49.16
Baseline+IG+ESB+BSTA 65.03 78.34 82.98 87.19 48.77 | 69.58 81.51 85.43 88.78 50.96
Besides, the gap between maximum and minimum maintains
at 0.2 ~ 2.5, which demonstrates the robustness of IBAN to
parameter selection. Based on these results, we fix A = 1.5,
Ours
Ay =1.5and A3 = 1.
D. Comparison With Several Representative RelD Methods
To wvalidate the effectiveness of IBAN, we compare
it with several recent person ReID methods, including
5 cross-modality person RelD methods (LbA [50], MPANet Baseline
[51], DDAG [52], VSD [53], CAJL [54]), 1 video-
based person RelD method (TCLNet [55]), and the
unique video-based Visible-Infrared Person Re-Identification .
R () Infrared to Visible
method (MITML [8]). Note that we use an average pooling '
layer for all image-based visible-infrared cross-modal person
Re-ID methods. We also report the results of IBAN without
the temporal information mining module(BSTA) for a fair Ours
comparison with image-based cross-modality ReID methods.
The comparison results are reported in Table I, where
IBAN* represents the model of IBAN without BSTA module.
Observing Table I, we can find that both MITML and IBAN J i
outperform other methods significantly, which demonstrates ’».3
the advantage of using video-based Visible-Infrared Person Baseline ¢
Re-Identification. Further, IBAN improves MITML by a large
margin, 5.04% Rank-1 and 3.27% mAP at the Visible to
Infrared setting. Such a result demonstrates the effectiveness .
. X (b) Visible to Infirared
of IBAN. Next, we conduct an ablation study to validate the

components of IBAN.

E. Ablation Study

The ablation study is based on a baseline model, a simple
two-stream network. As mentioned above, we improve the

Fig. 8. CAM heat maps comparison between baseline and IBAN.

baseline model by introducing an IG module for modality
discrepancy mitigating, a BSTA module for spatial-temporal
information mining, and an additional ESB loss to guide the
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Visible-to-Infrared

Fig. 9. RelD results of IBAN with different modules. ‘B’ denotes the baseline model. ‘B+X’" denotes the improved method with module ‘X’.

final embedding space. Besides, we build an IG™" module
that removes the reconstruction part from IG, a BSTA™?
module that replaces the bidirectional weighted mechanism
with a unidirectional weighted mechanism, a BSTA™% module
that removes the attention mechanism, and a BSTA™' module
that replaces LSTM with average pooling. The experimental
results are shown in Table II. It reveals that all components
are useful for improving the performance of IBAN. Further,
IG contributes most to the performance and improves the
accuracy of rank-1/mAP by 2.99%/2.47% in infrared-to-
visible retrieval situations, and by 2.87%/2.52% in visible-
to-infrared retrieval situations. Meanwhile, BSTA has the
minimum impact, which improves the accuracy of rank-1/mAP
by 1.66%/0.13% in infrared-to-visible retrieval situations, and
by 1.69%/0.12% in visible-to-infrared retrieval situations. The
advantage of BSTA over BSTA ™" supports our hypothesis that
the benefits of BSTA lie in leveraging bidirectional spatial-
temporal information of video data. Besides, the advantage
of IG over IG™ supports our hypothesis that the cross-
reconstruction module is beneficial for learning discriminative
embeddings.

F. Visualization

To provide a deep analysis of IBAN, we compare it with
the baseline using CAM heat maps. The experimental results,
reported in Figure 8, demonstrate that IBAN can effectively
weaken the interference of background information and focus
on discriminative pedestrian information. Meanwhile, the
features returned by IBAN come from almost the complete
body of the pedestrian, while the features returned by the
baseline model come from only a certain part. This indicates
that the retrieval behavior of IBAN is more similar to that
of humans, and it extracts and analyzes the features from
the pedestrians themselves, instead of incorrectly extracting
environmental features, such as pedestrian clothing features
and pedestrian posture features.

Besides, we report the RelD results of IBAN with the
different modules in Figure 9, where images with green
boundaries are correct results that are of the same ID as the
query, and images with red boundaries are incorrect results of
a different ID from the query. Note that, we randomly sample

a frame from each video clip for visualization. Observing
Figure 9, we can find that

o Color plays a significant role in infrared-to-visible, while
surface information greatly affects the results in visible-
to-infrared. Besides, both infrared-to-visible and visible-
to-infrared cannot effectively address the problem of the
pose. Such a result demonstrates that the baseline model
cannot address the modality discrepancy and leverage the
spatial-temporal information of data.

o Observing the results of baseline+IG, one can find
that the color and surface feature is relatively diverse
in infrared-to-visible and visible-to-infrared, respectively.
This result demonstrates that the IG module can partially
mitigate the modality discrepancy.

o The result difference between baseline+IG and
baseline+1G+BSTA reveals that BSTA can improve
the robustness of the model to pose via leveraging the
spatial-temporal information of video data.

e Observing the results of infrared-to-visible in
baseline+1G+BSTA+ESB, i.e., IBAN, one can find
that the quality of some returned images is very poor,
such as the 3-th, 6-th, and 8-th images obtained under
poor illumination environments. We can conclude that
the infrared data is beneficial for improving the model’s
generalization performance to visible data with poor
quality. And, the success is based on the hypothesis that
ESB loss can mitigate modality discrepancy significantly
in embedding space.

V. CONCLUSION

This paper provides a novel IBAN method to tackle the
challenging task of VVI-RelD, which could handle modality
discrepancy and mine spatial-temporal information simultane-
ously. Different from existing cross-modality methods, IBAN
handles modality discrepancy in different feature levels and
leverages a bidirectional spatial-temporal aggregation module
to exploit the spatial-temporal information of video data.
Extensive experimental results demonstrate the superiority
of IBAN, and ablation studies validate the effectiveness of
each module. In addition, note that although an intermediary-
guided module is beneficial for reducing the gap between
different modalities, Figure. 1 demonstrates that the features
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of some classes still have clear modality discrepancy. Besides,
a main disadvantage of IBAN is computing and storage costs
during training. We have to train an additional model for the
generated anaglyph data. But, note that IBAN retains the test
time cost because it will remove this model during the test
stage. In future work, we prefer to develop an approach that
can adaptively select the classes or samples with significant
modality discrepancies.
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