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Multi-modal hashing has attracted enormous attention in large-scale multimedia retrieval, owing to 
its advantages of low storage cost and fast Hamming distance computation. Existing multi-modal 
hashing methods assume that all multi-modal data are well paired and then encode the paired 
multiple modalities into joint binary codes. However, it is not ensured that all data are fully paired 
in practical applications. In this paper, we present an adaptive semi-paired query hashing method, 
which facilitates learning the hash codes for semi-paired query samples. The proposed method performs 
projection learning and cross-modal reconstruction learning to maintain the semantic consistency 
between multi-modal data. Meanwhile, the semantic similarity structure and the complementary multi-
modal information are preserved by hash codes to obtain a discriminative hash function. In the encoding 
stage, the missing modality features are completed via the learned cross-modal reconstruction matrices. 
In addition, the multimodal fusion weights are fine-tuned adaptively for the new query data to capture 
the modality difference. The extensive experiment results on three benchmark datasets show that our 
proposed algorithm outperforms state-of-the-art multi-modal hashing methods.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, it is a universal truth that information search en-
counters challenges with the tremendous amounts of multime-
dia data continuing to grow at an astonishing speed in social 
networks [20]. Hashing, as an effective representation technique, 
plays an important role in information retrieval, recommendation, 
and computer vision due to its advantages of low storage and 
high-efficiency [28]. The goal of hashing methods is to map high-
dimensional data into a string of compact binary codes. Thereby, 
the approximate nearest neighbor (ANN) search can be acceler-
ated by fast Exclusive OR (XOR) operation in large-scale data. 
Early pioneers focused on image search and proposed various uni-
modal hashing methods [7,4,23,8,10,15,14,9,13]. Uni-modal hash-
ing is widely applied to image search applications and achieved 
satisfactory performance.

However, uni-modal hashing works on a single modality and is 
intractable for multi-modal applications. In practical object search 
tasks, a target object usually is characterized by multiple modal-
ities from different aspects. For example, an image in WeChat 
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moments is often attached by related text descriptions. There is 
an emerging need that supports similarity measures across differ-
ent modalities in the field of information retrieval. Cross-modal 
hashing methods [29,30,34,37,6,12,35,31,26] are proposed to im-
plement the search task where taking one modality as a query to 
retrieve the other modalities from a database. Nevertheless, uni-
modal hashing and cross-modal hashing fail to generate directly 
the joint hash codes for paired multi-modal data.

Recently, with the success of multimodal technology in recog-
nition tasks [1,2], some researchers have focused on learning joint 
hash codes for multi-view features. An intuitive way is to concate-
nate multiple modality features as the input of uni-modal hashing 
models. However, the processing way causes information redun-
dancy and a curse of dimensionality. To overcome the problem, 
multi-modal hashing methods, such as Multiple Feature Hash-
ing (MFH) [27], Multi-view Latent Hashing (MVLH) [25], Multi-
view Alignment Hashing (MAH) [16], Deep Multi-modal Hashing 
(SID-MH) [17], and Hadmard matrix-Guided Multi-modal Hashing 
(HGMH) [33], are studied to code heterogeneous multi-modal data 
into a string of binary codes. These methods exploit the comple-
mentarity between multi-modal data to learn a joint hash function 
that can generate hash codes for query data with paired modali-
ties. Besides, some online multi-modal hashing works [18,36] are 
developed to dynamically capture the modality difference of new 
queries. However, the joint hash function learned by the above 
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Fig. 1. The framework of our proposed ASPQH. Our framework is divided into two stages, i.e., the training stage and the encoding stage. In the training stage, the multi-modal 
data is first projected into a low-dimensional subspace. In the subspace, one modality can be reconstructed by the subspace representation of any other modality. Then, the 
multi-modal information is fused and the semantic structure in label space is preserved by hash codes in Hamming space. In the encoding stage, we employ the learned 
cross-modal reconstruction matrices to complete the missing modality features and then adopt the self-weighting binary learning method to generate hash codes of new 
queries.
methods is not applied to unpaired query samples. It is not sure 
that all modalities are completed in real applications. To address 
this problem, a novel multi-modal hashing method called adap-
tively semi-paired query hashing (ASPQH) is proposed in this paper 
to learn the hash codes for semi-paired query data. Fig. 1 illus-
trates the flowchart of our proposed ASPQH. The proposed frame-
work includes an offline training stage and an online encoding 
stage. In the offline training stage, we jointly perform projection 
learning, cross-modal reconstruction learning, multi-modal fusion 
learning, and semantic preservation hashing learning to learn dis-
criminative hash function. In the encoding stage, our model clev-
erly uses the learned cross-modal reconstruction matrices to com-
plete the missing modality. Considering the modality information 
difference between training data and testing data, we adopt the 
dynamic weighting mode to obtain the hash codes of new queries. 
The main contributions of our proposed ASPQH are summarized as 
follows.

• We develop an adaptively semi-paired query hashing frame-
work that jointly performs subspace learning and hashing 
learning. Our learning architecture fuses the complementary 
multi-modal information and preserves the semantic structure 
information in label space by hash codes.

• We design cross-modal reconstruction terms to enhance the 
semantic consistency representation across heterogeneous 
modalities. Our model employs the learned reconstruction ma-
trices to solve effectively the joint code problem for unpaired 
samples.

• An effective optimization method is proposed to solve our ob-
jective function with a discrete constraint. A comparative eval-
uation of our proposed method with state-of-the-art methods 
on three datasets shows the effectiveness of our proposed 
method.
2

Structurally, the rest of this paper is organized as follows. Sec-
tion 2 reviews the related works of hash learning. The proposed 
adaptive sem-paired query hashing model is described in Sec-
tion 3. In Section 4, we present and discuss the experimental re-
sults on three datasets. The conclusions of the paper are drawn in 
Section 5.

2. Related work

In this section, we preliminarily review hashing-based retrieval 
methods. The existing hashing methods can be classified into three 
branches, i.e., uni-modal hashing, cross-modal hashing, and multi-
modal hashing.

2.1. Uni-modal hashing

Uni-modal hashing is designed to implement hash retrieval on 
a single modality. Uni-modal hashing methods are divided into 
data-independent methods and data-dependent ones. The rep-
resentative data-independent methods include Locality-sensitive 
Hashing (LSH) [4], Kernelized Locality Sensitive Hashing (KLSH) 
[11], Shift-invariant Kernel Hashing (SIKH) [21], etc. The data-
independent methods need a long code length to maintain high 
performance, which raises memory consumption and storage cost. 
Data-dependent methods usually have better retrieval accuracy 
than data-independent methods. Iterative Quantization (ITQ) [7] is 
a classic data-dependent hashing method. It uses an orthogonal 
rotation matrix to reduce the quantization loss. Supervised Dis-
crete Hashing (SDH) [23] develops an effective discrete optimiza-
tion method to solve the discrete variable without any relaxation 
operations. Discrete Locality Linear Embedding Hashing (DLLH) [8]
preserves the locality manifold structure of original data space by 
hash codes. An anchor-based acceleration scheme is proposed to 
extend DLLH to large-scale data scenarios. Hadamard Codebook 
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based Online Hashing (HCOH) [15] associates those data sharing 
the same label with a codeword sampled from the Hadamard ma-
trices to train the hash function online.

2.2. Cross-modal hashing

Cross-modal hashing aims at retrieving other relevant modali-
ties by a given modality as the query. The learned hash functions 
can encode each modality separately but can not directly encode 
paired multiple modalities to obtain their joint hash codes. Re-
cently, various cross-modal hashing methods are grouped into su-
pervised cross-modal hashing and unsupervised cross-modal hash-
ing. Unsupervised cross-modal hashing tends to learn hash func-
tions by exploring data distribution and topological structure. Joint 
and Individual Matrix Factorization Hashing (JIMFH) [30] learns 
unified hash codes and individual hash codes to preserve the 
shared properties of multi-modal data and the specific properties 
of each modality, respectively. Unsupervised Multi-modal Hash-
ing (UMH) [35] explores both the semantic correlation of textual 
modality and the local geometric structure of visual modality in 
a hashing learning framework. Supervised cross-modal hashing 
methods employ the semantic labels of training data to learn com-
pact hash codes. Such methods can achieve higher retrieval perfor-
mance than unsupervised ones. Supervised Robust Discrete Multi-
modal Hashing (SRDMH) [12] learns discriminative hash functions 
based on label information and preserves the similarity of the orig-
inal space. Semi-supervised and Semi-paired Hashing (SSH) [34] is 
proposed to learn the robust hash functions under semi-paired and 
semi-supervised multi-modal data situations. Semantic-enhanced 
Discrete Matrix Factorization Hashing (SDMFH) [6] learns a com-
mon hashing representation of all modalities by factorizing the 
intermodal semantic similarity graph. Scalable Asymmetric Dis-
crete Cross-modal Hashing (BATCH) [31] preserves the pairwise 
label distances through hash codes and improves algorithm com-
plexity. Scalable Discrete Matrix factorization and Semantic Au-
toencoder (SDMSA) [37] reconstructs original modality features via 
common binary features to enhance the representation capacity of 
hash codes. Specific Class Center Guided Deep Hashing (SCCGDH) 
[26] learns specific class centers under a neural network architec-
ture. Similar to uni-modal hashing, cross-modal hashing takes one 
modality as the query to be coded.

2.3. Multi-modal hashing

Multi-modal hashing learns a joint hash function to encode the 
paired multi-modal data, different from cross-modal hashing and 
uni-modal hashing. Most existing multi-modal hashing approaches 
try to fuse multi-modal information in an unsupervised learning 
manner. For example, Multiple Feature Hashing (MFH) [27] first 
constructs multi-view graphs and a global graph, and then pre-
serves these structure information in hash learning. Besides, Multi-
view Latent Hashing (MVLH) [25] adopts the matrix factorization 
in the kernel feature space to learn compact and unified binary 
codes. Multiview Discrete Hashing (MVDH) [24] develops a non-
negative spectral clustering method to obtain the cluster pseudo 
labels, then performs the collective matrix factorization and map-
ping learning to keep the consistency between the cluster labels 
and hash codes. Semantic-driven Interpretable Deep Multi-modal 
Hashing (SIDMH) [17] designs a deep hashing network to gener-
ate interpretable hash codes. The output of each branch of the 
SIDMH model is concatenated to obtain the hash codes of any 
query sample with category information. Hadamard Matrix-Guided 
Multi-modal Hashing (HGMH) [33] jointly performs the subspace 
learning and target feature learning to learn a discriminative and 
unified hash function.
3

Although the above methods have achieved great progress, the 
modality difference between different multi-modal data can be 
further studied, which may provide potential improvement. The 
hardened hash function learned from the training stage is not ap-
plied to all queries. Therefore, Multi-modal Hashing methods with 
dynamic query code are developed in recent years. Online Multi-
modal Hashing with Dynamic Query-adaption (OMH-DQ) [18] ex-
ploits the complementarity of multi-modal information and the 
supervision of pair-wise semantic labels to learn a robust joint 
hash function. Adaptive Multi-modal Fusion Hashing (AMFH) [36]
introduces the Hadamard matrix to generate hash centers for spe-
cific classes and induces the samples with the same class to be 
close to their common class center point in Hamming space. In 
the above methods, the hash codes of query samples are gener-
ated with the adaptive modality weights to capture the modality 
difference among multi-modal data.

However, the aforementioned multi-modal hashing methods 
need to ensure that the query sample has complete modal infor-
mation to obtain its joint hash codes. Currently, few multi-modal 
hashing methods provide solutions to generate binary codes for 
unpaired query data. In this paper, we propose a novel Adap-
tive Semi-paired Query Hashing (ASPQH) to learn a discriminative 
and joint hash function and apply it to encode semi-paired multi-
modal data.

3. The proposed method

3.1. Model formulation

Assume that a training dataset consists of n image-text pairs. 
The image set and the text set are represented as Y (1) = [y(1)

1 , · · · ,

y(1)
n ] and Y (2) = [y(2)

1 , · · · , y(2)
n ], respectively, where y(1)

i ∈ Rdx and 
y(2)

i ∈ Rdy . The label matrix is L = [l1, · · · , ln] ∈ Rr×n , where r
denotes the number of categories. li = [li1, · · · , lir]T ∈ Rr , where 
li j = 1 if the i-th object is classified into the j-th category, oth-
erwise li j = 0. We adopt the radial basis function (RBF) ker-
nel to obtain the image features and text features, for exam-
ple, the i-th sample of the m-th modality is calculated by Xi

m =
[exp(

‖y(m)
i −A(m)

1 ‖2

−2σ 2
m

), · · · , exp(
‖y(m)

i −A(m)

k ‖2

−2σ 2
m

)]T , where m is equal to 1

or 2 and σm is the kernel width of the m-th modality; A(1) ∈ Rdx×k

and A(2) ∈ Rdy×k are the anchor samples that are taken randomly 
from image modality and text modality, respectively. In this paper, 
we use X1 and X2 to denote the feature matrix of image modality 
and text modality, respectively.

The paired different modalities describe the same semantic 
content. Therefore, the consistency semantically can be viewed as a 
bridge across different modalities. The original modality features of 
one modality can be reconstructed by the subspace representation 
of other any modality to capture the highly semantic correlation 
between the paired different modalities. We aim to find a latent 
subspace to achieve the goal and the “cross-modal reconstruction” 
idea is defined as the following formula:

min
P1,P2,E1,E2,U1,U2

λ(‖P1 X1 − E1‖2
F + ‖X1 − U1 E2‖2

F )

+ (1 − λ)(‖P2 X2 − E2‖2
F

+ ‖X2 − U2 E1‖2
F )

(1)

where λ is a hyperparameter that is manually tuned within a range 
of [0 1] to balance the projection learning and cross-modal recon-
struction terms of image modality and text modality. Pm ∈ Rd×k

and Um ∈ Rk×d are the mapping matrix and the basis matrix of the 
m-th modality, respectively. Em ∈ Rd×n denotes the feature repre-
sentation of the m-th modality in the latent subspace. “Cross” in 
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cross-modal reconstruction learning module is embodied by image 
feature reconstruction term ‖X1 − U1 E2‖2

F and text feature recon-
struction term ‖X2 − U2 E1‖2

F in Eq. (1). The purpose of our model 
is to fuse complementary multi-modal information to learn joint 
hash codes. The semantic structure information in label space is 
preserved by hash codes to improve the discriminative ability of 
our model and boost retrieval performance. Specifically, the prob-
lem is formulated as follows.

min
W1,W2,B,αm

M∑

m=1

(αm)t‖Wm Em − B‖2
F + β‖S − BT B‖2

F

s.t.B ∈ {+1,−1}c×n,

M∑

m=1

αm = 1,αm > 0,

(2)

where Wm ∈ Rc×d represents the mapping matrix that transforms 
the features of the m-th modality to Hamming space. It cost O(n2)

to store S ∈ Rn×n and is infeasible when the number of the train-
ing data is quite large. In this paper, we replace the affinity matrix 
S with the inner product LT L in the optimization, where S is de-

fined as Sij = li l j
‖li‖2‖l j‖2

. αm denotes the weighting coefficient of the 
m-th modality and t is a smoothing parameter. The overall opti-
mization problem is formulated as follows.

min
P1,P2,E1,E2,U1,
U2,W1,W2,B,αm

λ(‖P1 X1 − E1‖2
F + ‖X1 − U1 E2‖2

F )

+ (1 − λ)(‖P2 X2 − E2‖2
F + ‖X2 − U2 E1‖2

F )

+
M∑

m=1

(αm)t‖Wm Em − B‖2
F + β‖S − BT B‖2

F

+ γ �(P1, P2, U1, U2, W1, W2)

s.t.B ∈ {+1,−1}c×n,

M∑

m=1

αm = 1,αm > 0,

(3)

where λ, β and γ are balance parameters. In objective function (3), 
P1, P2, W1, W2, U1, U2, α1 and α2 are the necessary parameters 
of the joint hash function to be learned.

3.2. Optimization method

It is difficult directly to solve the non-convex optimization 
problem (3). In this subsection, an iterative algorithm is proposed 
to solve any one of multiple variables with other variables fixed. 
The updating rules are summarized in the following steps.

1) Step 1: Fixing other variables and rewriting the objective 
function of P1, we can obtain

min
P1

λ‖P1 X1 − E1‖2
F + γ ‖P1‖2

F (4)

Letting the derivative of (4) concerning P1 to zero, we obtain the 
closed-form solution of P1.

P1 = λE1 X T
1 (λX1 X T

1 + γ I)−1 (5)

2) Step 2: Fixing other variables and rewriting the objective 
function of P2, we can obtain

min
P2

λ‖P2 X2 − E2‖2
F + γ ‖P2‖2

F (6)

Letting the derivative of (6) concerning P2 to zero, we obtain the 
closed-form solution of P2.

P2 = λE2 X T (λX2 X T + γ I)−1 (7)
2 2

4

3) Step 3: Fixing other variables and rewriting the objective 
function of E1, we obtain

min
E1

λ‖P1 X1 − E1‖2
F + (1 − λ)‖X2 − U2 E1‖2

F

+ (α1)
t‖W1 E1 − B‖2

F

(8)

Letting the derivative of (8) concerning E1 to zero, we can derive

E1 =(λI + (1 − λ)U T
2 U2 + αt

1W T
1 W1)

−1

(λP1 X1 + (1 − λ)U T
2 X2 + αt

1W T
1 B)

(9)

4) Step 4: Fixing other variables and rewriting the objective 
function of E2, we obtain

min
E2

(1 − λ)‖P2 X2 − E2‖2
F + λ‖X1 − U1 E2‖2

F

+ (α2)
t‖W2 E2 − B‖2

F

(10)

Letting the derivative of (10) concerning E2 to zero, we can derive

E2 =((1 − λ)I + λU T
1 U1 + αt

2W T
2 W2)

−1

((1 − λ)P2 X2 + λU T
1 X1 + αt

2W T
2 B)

(11)

5) Step 5: Fixing other variables and rewriting the objective 
function of U1, we can get

min
U1

λ‖X1 − U1 E2‖2
F + γ ‖U1‖2

F (12)

Letting the derivative of (12) concerning U1 to zero, we derive

U1 = λX1 E T
2 (λE2 E T

2 + γ I)−1 (13)

6) Step 6: Fixing other variables and rewriting the objective 
function of U2, we can get

min
U2

(1 − λ)‖X2 − U2 E1‖2
F + γ ‖U2‖2

F (14)

Letting the derivative of (14) concerning U2 to zero, we derive

U2 = (1 − λ)X2 E T
1 ((1 − λ)E1 E T

1 + γ I) (15)

7) Step 7: Fixing other variables and rewriting the objective 
function of Wm , we obtain

min
Wm

(αm)t
M∑

m=1

‖Wm Em − B‖2
F + γ

M∑

m=1

‖Wm‖2
F (16)

Letting the derivative of (16) concerning Wm to zero, we can derive

W1 = (α1)
t B E T

1 ((α1)
t E1 E T

1 + γ I)−1 (17)

W2 = (α2)
t B E T

2 ((α2)
t E2 E T

2 + γ I)−1 (18)

8) Step 8: Fixing other variables and rewriting the objective 
function of αm , we can get

min
αm

M∑

m=1

Gm

s.t.
M∑

m=1

αm = 1,αm > 0

(19)

where Gm = ‖Wm Em − B‖2
F . The optimal αm is obtained by opti-

mizing the Lagrange function of (19).

αm = (Gm)
1

(1−t)

∑M
(G )

1
(1−t)

(20)
m=1 m
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9) Step 9: Fixing other variables and rewriting the objective 
function of B , we can obtain

min
αm

M∑

m=1

‖Wm Em − B‖2
F + β‖BT B − S‖2

F

s.t.B ∈ {+1,−1}c×n

(21)

The objective function Eq. (21) with a binary constraint is an NP-
hard problem. We introduce an auxiliary variable V to approxi-
mate one of B variables and get an equivalent form:

min
B,V

M∑

m=1

‖Wm Em − B‖2
F + β‖BT V − S‖2

F

+ ρ‖B − V ‖2
F

s.t.B ∈ {+1,−1}c×n

(22)

where ρ is a balance parameter. We adopt an alternative optimiza-
tion way to solve B and V . Specifically, when fixing V , we obtain 
the closed form solution

B = sign(

M∑

m=1

(αm)t Wm Em + βV S T + ρV ) (23)

When fixing B , we let the derivative of the objective function (22)
concerning V to zero, then

V = (βB BT + ρ I)−1(βB S + ρB) (24)

In the training stage, the above steps are repeated until the 
overall objective function converges or the number of iterations 
reaches the preset maximum value. The optimization steps are 
summarized in Algorithm 1. After the above optimization process, 
the optimal P1, P2, U1, U2, W1 and W2 are given to the following 
stages.

Algorithm 1 The learning process of hash function.
Input: Training set O  = {(Y 1

1 , Y 1
2 , l1), ..., (Y n

1 , Y n
2 , ln)}.

Calculating the non-linear representation matrices: X1, X2.
Initializing U1, U2, E1, E2, W1, W2, B , α1, α2.

1: repeat
2: Update P1 according to Eq. (5);
3: Update P2 according to Eq. (7);
4: Update E1 according to Eq. (9);
5: Update E2 according to Eq. (11);
6: Update U1 according to Eq. (13);
7: Update U2 according to (15);
8: Update W1 according to (17);
9: Update W2 according to (18);

10: Update αm(m = 1, ..., M) according to (20);
11: Update B according to (23) and (24);
12: until convergence
Output: P1, P2, U1, U2, W1, W2, α1 and α2.

3.3. Unpaired query extension

Most of the existing multi-modal hashing methods assume 
that all data are well paired. However, there are unpaired query 
samples in many applications. In this subsection, we employ the 
learned U1 and U2 in the training stage to cope with the unpaired 
query data. Specifically, if the image features of the query data q
are not available, we can complete them based on the available 
text subspace features E2 and the construction matrix U1. We have

min
Xq

‖Xq
1 − U1 E2‖2

F (25)

1

5

Fig. 2. Schematic diagram of the difference between traditional encoding method 
and online encoding method in the encoding process.

where E2 = P2 Xq
2. We can easily acquire image features

Xq
1 = U1 P2 Xq

2 (26)

Similarly, if the query data q only contains image modality fea-
tures, that is, the text modality features are missing. The missing 
text features can be calculated according to the following formula:

min
Xq

2

‖Xq
2 − U2 E1‖2

F (27)

where E1 = P1 Xq
1. We have text features

Xq
2 = U2 P1 Xq

1 (28)

As far, we have obtained the paired image feature matrix Xq
1

and text feature matrix Xq
2 of a query set.

3.4. Encoding stage

The previous multi-modal methods usually applied the learned 
joint hash function f (Xq

1, Xq
2) = sign(α1W1 P1 Xq

1 + α2W2 P2 Xq
2) in 

the training stage to obtain the joint hash codes of paired multi-
ple modalities. The weighting coefficient of each modality is fixed 
in the encoding stage. However, there is a large modality differ-
ence between different multi-modal data. The weighting coeffi-
cients learned from the training stage do not adapt to all query 
data. Therefore, the weights of different modalities should be ad-
justed dynamically with an endless stream of data. Fig. 2 illustrates 
the difference between conventional offline encoding and online 
encoding. Assume that Xq

m denotes the m-th modality of the newly 
arrived query data, the learning problem is defined as follows.

min
αm,Bq

M∑

m=1

(α
q
m)t‖Q m Xq

m − Bq‖2
F

s.t.
M∑

m=1

α
q
m = 1, B ∈ {+1,−1}c×n

(29)

where Q m = Wm Pm . The Eq. (29) can be solved alternately accord-
ing to the following two steps. Concretely,

Step1: Optimization of αq
m

α
q
m = (Gq

m)
1

(1−t)

∑M
(Gq

)
1

(1−t)

(30)
m=1 m
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Step2: Optimization of B

Bq = sign(

M∑

m=1

(α
q
m)t Q m Xq

m) (31)

As seen in Algorithm 2, the above process is performed iteratively 
until (29) converges. The optimal Bq is regarded as the joint hash 
codes of the query data q.

Algorithm 2 Adaptive Semi-paired Query Hashing (ASPQH).

Input: P1, P2, W1, W2, Xq
1 , Xq

2
If image modality is missing, then Xq

1 is obtained according to Eq. (26);
If text modality is missing, then Xq

2 is obtained according to Eq. (28);
Calculating Q 1 = P1 W1 and Q 2 = P2 W2.
Initializing Bq .

1: repeat
2: Update α1 and α2 according to Eq. (30);
3: Update Bq according to Eq. (31);
4: until convergence
Output: Bq , α1, α2.

3.5. Complexity analysis

The objective function (3) is minimized by alternatively updat-
ing each variable. In this subsection, we detail the computational 
complexity of our updating algorithm in the training stage. Sup-
pose that n is the size of the training set, c denotes the hash 
code length, d and k represent the dimension of the latent sub-
space and the original kernel space, respectively. In Eq. (5) and 
(7), the matrix inversion and the matrix multiplication operations 
require O(k3) and O(dnk), respectively, thus the time complex-
ity of updating P1 and P2 is O(dnk + k3). Similarly, updating E1, 
E2, U1 and U2 cost O(dnk). In Eq. (17) and (18), it needs O(nd2)

to update W1 and W2 since d < n. When updating B , the time 
complexity is O(n2c) if we use directly S to calculate in optimiza-
tion. In this paper, we utilize label matrix LT L to replace S , thus 
the computational complexity is reduced to O(cdn). Suppose the 
algorithm converges after ξ iterations, the overall training cost is 
O(ξ(dkn + k3)).

4. Experiments

To validate the effectiveness of our proposed method, we con-
duct comparison experiments with several state-of-the-art meth-
ods on three benchmark datasets, i.e., Pascal Sentence1 [22], NUS-
WIDE2 [3], and IAPR TC-123[5]. The detailed statistics of these 
datasets are presented in Table 1. In experiments, the query data to 
be encoded in batch is divided into a testing set and a retrieval set. 
We obtain hash codes batch by batch according to the procedures 
of the encoding stage. The multi-modal retrieval experiments are 
performed on three datasets, using the testing set to search related 
results from the retrieval set.

4.1. Data sets

Pascal Sentence consists of 1,000 image-text pairs. These pairs 
are divided into 20 categories. Each image is attached in 5 sepa-
rate sentences. We use the CNN visual features [32] and the 100-
dimensional probability vector to represent images and texts, re-
spectively. For a fair comparison, we randomly take 800 image-text 

1 https://vision .cs .uiuc .edu /pascal -sentences/.
2 http://lms .comp .nus .edu .sg /research /NUS -WIDE .htm.
3 https://www.imageclef .org /photodata.
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Table 1
Statistics of three benchmark datasets.

DataSets Pascal Sentence NUS-WIDE IAPR TC-12

Data Set Size 1,000 186,577 20,000
Training Set Size 800 5,000 5,000
Retrieval Set Size 800 186,577 18,000
Testing Set Size 200 1,866 2,000
Num. of Labels 20 10 255

pairs to compose a training dataset (40 pairs per class), and the re-
maining 200 image-text pairs are regarded as a testing dataset (5 
pairs per class).

NUS-WIDE is comprised of 269,648 image-text samples of 81 
concepts. In our experiments, we only keep 186,577 samples of 
the top ten most frequent concepts. Each image and each text 
are represented by a 500-dimensional bag-of-visual words vector 
and the 1000-dimensional tag occurrence vector, respectively. A 
random subset of 1,866 samples is used as a testing set and the re-
maining 18,4711 samples are regarded as a retrieval set. We take 
randomly 5,000 samples from the retrieval set to form a training 
set.

IAPR TC-12 contains 20,000 image-text samples that are an-
notated by 255 tags. The dataset is divided into a testing set of 
2,000 samples and a database of 18,000 samples. We randomly 
take a subset of 5,000 samples from the database to form a train-
ing set. The text modality of each sample is represented by a 
2912-dimensional bag-of-words vector. The 512-dimensional GIST 
feature vector is extracted to represent image modality.

4.2. Experiment settings

In our experiments, we compare the proposed ASPQH with 
some hashing models including ITQ [7], LSH [4], DLLH [8], 
HCOH [15], MFH [27], MVLH [25], OMH-DQ [18], SIDMH [17] and 
AMFH [36], based on the following evaluation metrics.

The Mean Average Precision (mAP) is one evaluation criterion of 
retrieval performance. The Average Precision (AP) for given a query 
q is defined as follows.

AP(q) = 1

lq

R∑

m=1

Pq(m)δq(m) (32)

where lq denotes the number of correct instances in the top R
retrieval results; Pq(m) is the accuracy of top m retrieved results; 
δq(m) = 1 if the m-th position is right, otherwise, δq(m) = 0. The 
average AP value of all queries is mAP. The larger mAP indicates 
the better performance. R is set to the size of the retrieve set in 
the following experiments.

Among baselines, ITQ, LSH, DLLH, and HCOH are representa-
tive uni-modal hashing methods while the others are multi-modal 
hashing. The multiple modality features are concatenated as the 
input of all uni-modal methods for a fair comparison. The hyper-
parameters in the baseline methods are set according to the sug-
gestions reported in their original papers. In the encoding stage, 
we empirically set the size of each batch as 0.02 ∗ num, where 
num is equal to the number of the training set. In experiments, we 
tune each hyper-parameter in sequence within a wide range (see 
Section 4.5) and find an optimal value for our proposed method by 
fixing other parameters. The detailed parameter settings are shown 
as follows. λ = 0.5, β = 1e5, γ = 1e−3, ρ = 1e3 on Pascal Sentence 
dataset; λ = 0.1, β = 1e1, γ = 1e−3, ρ = 1e3 on NUS-WIDE dataset; 
λ = 0.9, β = 1e3, γ = 1e−5, ρ = 1e−5 on IAPR TC-12 dataset. All 
baseline methods and our proposed ASPQH are implemented on 
a workstation with MATLAB R2018b. This workstation is config-
ured with 16 GB memory and Intel(R) Core(TM) i7-10700 CPU 
@2.90 GHz.

https://vision.cs.uiuc.edu/pascal-sentences/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
https://www.imageclef.org/photodata
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Table 2
mAP comparison under different bits in fully-paired scenarios.

Task Methods Pascal Sentence NUS-WIDE IAPR TC-12
16 32 64 128 16 32 64 128 16 32 64 128

O2O ITQ 0.3602 0.3523 0.3675 0.3803 0.3724 0.3751 0.3776 0.3789 0.3730 0.3844 0.3936 0.4020
LSH 0.1011 0.1243 0.1572 0.2129 0.3421 0.3554 0.3544 0.3672 0.3251 0.3363 0.3509 0.3686
DLLH 0.3631 0.3720 0.3971 0.3959 0.3738 0.3782 0.3794 0.3823 0.3644 0.3796 0.3863 0.3868
HCOH 0.2135 0.4812 0.4846 0.4860 0.3232 0.3451 0.3434 0.3645 0.3082 0.3581 0.3717 0.3712
MFH 0.1834 0.2399 0.2729 0.2731 0.3673 0.3752 0.3803 0.3815 0.3263 0.3374 0.3435 0.3451
MVLH 0.1192 0.1347 0.1200 0.1202 0.3363 0.3339 0.3324 0.3284 0.3394 0.3401 0.3409 0.3499
OMH-DQ 0.4177 0.6719 0.7414 0.7622 0.5223 0.5381 0.5823 0.5957 0.3949 0.4200 0.4446 0.4642
SIDMH 0.6681 0.7479 0.7596 0.7660 0.5828 0.5976 0.6055 0.6120 0.4131 0.4277 0.4364 0.4706
AMFH 0.6837 0.7501 0.7511 0.7519 0.6190 0.6240 0.6271 0.6385 0.4198 0.4374 0.4571 0.4887
ASPQH 0.5328 0.7723 0.7815 0.7712 0.6325 0.6511 0.6624 0.6556 0.4371 0.4620 0.4983 0.5128

Fig. 3. The PR curves of all methods on Pascal Sentence (a), NUS-WIDE (b), and IAPR TC-12 (c).

Table 3
mAP comparison under different bits in unpaired scenarios.

Task Methods Pascal Sentence NUS-WIDE IAPR TC-12
16 32 64 128 16 32 64 128 16 32 64 128

I2I ITQ 0.2559 0.2646 0.2751 0.2761 0.3164 0.3266 0.3357 0.3465 0.3501 0.3535 0.3542 0.3587
LSH 0.0910 0.1076 0.1376 0.1718 0.3202 0.3265 0.3267 0.3269 0.3271 0.3379 0.3481 0.3504
DLLH 0.2481 0.2599 0.2651 0.2706 0.3263 0.3264 0.3278 0.3368 0.3487 0.3503 0.3546 0.3555
HCOH 0.1676 0.3326 0.3336 0.3360 0.3377 0.3406 0.3500 0.3647 0.3025 0.3135 0.3228 0.3356
ASPQH_img 0.3275 0.4648 0.6030 0.6150 0.3610 0.3677 0.4339 0.4360 0.3873 0.3920 0.3972 0.4096

T2T ITQ 0.4662 0.4879 0.4595 0.4386 0.3963 0.3896 0.3873 0.3856 0.3054 0.2976 0.2994 0.3012
LSH 0.1803 0.2483 0.3551 0.3926 0.3283 0.3394 0.3507 0.3589 0.3109 0.3135 0.3219 0.3182
DLLH 0.4512 0.4524 0.4726 0.4908 0.3739 0.3784 0.3803 0.3881 0.2963 0.2911 0.2891 0.2896
HCOH 0.4859 0.6118 0.6226 0.6259 0.6194 0.6288 0.6316 0.6337 0.3856 0.4001 0.4164 0.4307
ASPQH_txt 0.5125 0.7519 0.7630 0.7623 0.5894 0.6303 0.6402 0.6409 0.3858 0.4090 0.4431 0.4497
4.3. Retrieval accuracy comparison

In this section, we compare our proposed method with the 
baseline methods to validate the effectiveness of our model. In our 
experiments, we carry out three retrieval tasks including image 
query image, text query text, and image-text pair query image-
text pair, which are often abbreviated to “I2I”, “T2T” and “O2O”, 
respectively. We report the retrieval performance of all methods 
under different code lengths on three datasets. The code length is 
set sequentially from 16 bits to 128 bits to evaluate the retrieval 
performance of our method comprehensively.

4.3.1. Results on Pascal sentence
The mAP values of all compared methods on the Pascal Sen-

tence reported in Table 2. The proposed ASPQH outperforms all 
uni-modal hashing methods. Our proposed ASPQH is inferior to 
SIDMH and AMFH when the code length is 16 bits while AS-
PQH achieves an average improvement of 2.4% over the suboptimal 
baseline method (i.e., AMFH) when the code length is greater than 
32 bits. In addition, we vary Hamming radius to return the points 
that fall within different radii and plot the Precision-Recall (PR) 
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curves of all compared methods on the Pascal Sentence. As seen 
in Fig. 3(a), our proposed ASPQH performs best than all base-
lines. Further, we apply our model to uni-modal modality retrieval 
scenarios where only one single modality is provided and other 
modalities are missing. In our experiments, “ASPQH_img” indicates 
only the image modality is given in the encoding stage and “AS-
PQH_txt” denotes only the text modality is provided to complete 
hash encoding. It is noted that “ASPQH_img”, and “ASPQH_txt” uti-
lize the reconstructed features of the missing modality to obtain 
joint hash codes. In Table 3, we can see that our proposed AS-
PQH consistently outperforms all uni-modal methods by a large 
performance margin on the Pascal Sentence dataset. To observe 
the retrieval performance more intuitively, we provide the visu-
alization of a testing experiment with an image-text query on the 
Pascal Sentence dataset. In Fig. 4, the left of the figure is a given 
query sample and the top five samples of the retrieved results of 
all methods are listed on the right of the figure. We can see that 
the first, third, and fifth positions of the shown results returned 
by our method are related to the given query sample. Compared 
with the baseline methods, our method has more competitive and 
achieves better performance.
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Table 4
mAP comparison between SPQH and ASPQH under different bits.

Methods Pascal Sentence NUS-WIDE IAPR TC-12
16 32 64 128 16 32 64 128 16 32 64 128

SPQH 0.5176 0.7641 0.7799 0.7689 0.6208 0.6231 0.6353 0.6410 0.4060 0.4601 0.4691 0.4964
ASPQH 0.5328 0.7723 0.7815 0.7712 0.6325 0.6511 0.6624 0.6556 0.4371 0.4620 0.4983 0.5128
Fig. 4. Example of multi-modal retrieval. The images framed in red are the correct 
search results.

4.3.2. Results on NUS-WIDE
The mAP values of all baselines and our proposed method on 

the NUS-WIDE data set are shown in Table 2. We clearly find that 
ASPQH offers a significant improvement over the baseline meth-
ods. The PR curves of all methods on NUS-WIDE are plotted in 
Fig. 3 (b). By the above experiment results, we can see that our AS-
PQH is superior to all compared methods on the “O2O” task under 
different code lengths. In Table 3, we report the retrieval accuracy 
of all methods on “I2I” and “T2T” tasks. In terms of average accu-
racy, our proposed ASPQH is higher than the best baseline method 
(i.e., HCOH) by 5% on “I2I” task and achieves comparable perfor-
mance on “T2T” task. The experimental results on NUS-WIDE show 
that our method can be used to handle large-scale image search 
and text search problems. Further, we can find that ASPQH_txt is 
better and closer to ASPQH than ASPQH_img by comparing AS-
PQH, ASPQH_img, and ASPQH_txt reported in Table 2, 3. These 
experimental phenomena indicate that our method is more able 
to handle unpaired textual queries than unpaired visual query sce-
narios on the NUS-WIDE dataset.

4.3.3. Results on IAPR TC-12
The mAP results and the PR curves of all methods on the “O2O” 

task are shown in Table 2 and Fig. 3, respectively. We can see 
that our proposed ASPQH consistently outperforms other methods 
and achieves higher accuracy with the increase of the code length. 
Specifically, our method achieves an average improvement of 3% on 
the “O2O” task. Likewise, our method in unpaired query scenarios 
is superior to other uni-modal hashing methods on the IARP TC-12 
dataset. “ASPQH_img” and “ASPQH_txt” outperform the best base-
line method by 4% and 1%, respectively.
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4.4. Discussion

Most of the multi-modal hashing methods exploit mainly the 
complementary information between multi-modal data to learn 
joint hash codes. In this section, we experimentally explore the 
representation ability of different feature spaces during the space 
transformation process of the training stage. The experiments are 
performed on a single-label dataset (i.e., Pascal Sentence) to make 
an intuitive comparison. In experiments, we first select randomly 
600 images and 600 texts to train our model and get the features 
of the intermediate process. Then, the t-SNE tool [19] is used to 
plot the feature distributions of these different spaces. Fig. 6 shows 
the visualization distributions of the original image features, the 
original text features, the features of common subspace, and bi-
nary features. As seen in Fig. 6 (a), (b), it is hard to separate them 
in the original multi-modal spaces. Taking text modality as an ex-
ample, we show the distribution of common subspace in Fig. 6 (c). 
It can be observed that the different clusters are presented and 
the image-text pairs of different categories are gathered in differ-
ent areas. Fig. 6 (d) presents the distribution of the learned joint 
hash codes. We can see clearly that the image-text pairs with the 
same class are more compact and the areas of different classes are 
more separated in Hamming space. The above experimental results 
demonstrate that our proposed ASPQH is very effective to learn 
discriminative hash codes.

In the encoding stage of our framework, we adopt the dynamic 
weighting module to eliminate the modality difference between 
the training set and query data. We design the following abla-
tion experiments to investigate the effectiveness of our proposed 
ASPQH. “SPQH” indicates the weight of each modality is fixed as 
the learned weights in the training stage. We perform experiments 
to compare SPQH and ASPQH on three datasets. The experiment 
results under different code lengths are reported in Table 4. We 
can find that ASPQH is consistently better than SPQH. Specifically, 
ASPQH offers the average improvement of 0.68%, 2.1%, and 1.9% 
on Pascal Sentence, NUS-WIDE, and IAPR TC-12, respectively. It is 
noted that the improvements on NUS-WIDE and IAPR TC-12 are 
higher than that on Pascal Sentence. To visually observe the change 
of each modality weight in the encoding stage, we plot the varia-
tion curves of modality weights on each dataset. As seen in Fig. 5, 
the amplitude of curves on the NUS-WIDE and IAPR TC-12 dataset 
is large while that of the curves on Pascal Sentence is small. The 
possible reason is that the modality difference on NUS-WIDE and 
IAPR TC-12 is greater than that on Pascal Sentence. The above 
experimental results demonstrate that ASPQH can achieve more 
competitive performance than SPQH in the larger data difference 
scenarios. To explore the contribution of visual and textual fea-
tures to the retrieval task, we conduct the ablation experiments in 
this part. ASPQH1 indicates that the proposed method only uses 
the visual feature to encode multimodal instance samples, which 
means that the weight of the visual modality is always set to 1 
during the encoding phase, and the weight of the textual modality 
is set to 0. In ASPQH2, only the textual feature is utilized, that is, 
the weight of the visual modality is set to 0, and the weight of the 
textual modality is set to 1. As shown in Table 5, we can see that 
ASPQH1 has higher accuracy than ASPQH2 on three datasets. The 
retrieval results demonstrate that the visual feature is more impor-
tant than textual feature to perform the multi-modal retrieval task 
on three datasets.



J. Yu, W. Huang, Z. Li et al. Digital Signal Processing 143 (2023) 104226

Fig. 5. The visualization of modality weights variation under different batches in the encoding stage.

Fig. 6. The t-SNE visualization of different feature spaces.
Table 5
mAP comparison based on different modality features.

Method ASPQH1 ASPQH2 ASPQH

Pascal Sentence 0.6159 0.4837 0.7815
NUS-WIDE 0.4702 0.4323 0.6624
IAPR TC-12 0.4162 0.3680 0.4983

4.5. Parameter sensitivity analysis

In this section, we conduct experiments to observe the perfor-
mance variation of our proposed method by varying one parameter 
value within an empirical candidate range and fixing the other pa-
rameters. In our experiments, the code length is set to 128 bits. 
The sensitivity analysis of λ, β , γ , and ρ is presented as follows.

λ is a balance parameter that affects the importance of differ-
ent modalities. λ is tuned within the range of [0.1, 0.9]. The image 
modality has more effect on the performance of our model if its 
value is greater than 0.5, and vice versa. Fig. 7 (c) shows the per-
formance variation under different λ values on three datasets. On 
Pascal Sentence and NUS-WIDE, the mAP value decreases when λ
varies from 0.1 to 0.9. On the contrary, the mAP of our ASPQH 
is changed slightly on the IAPR TC-12 dataset with the increase of 
the λ. ASPQH achieves optimal retrieval performance when λ is set 
as 0.1, 0.1, and 0.9 on Pascal Sentence, NUS-WIDE, and IAPR TC-
12, respectively. A possible reason is that the text modality plays a 
more important role than the image modality on Pascal Sentence 
and NUS-WIDE while the image modality contributes more infor-
mation than the text modality on the IARP TC-12 dataset.

β controls the importance of the semantic preservation term 
of our model. In our experiments, β is determined in the range 
of {1e−5, 1e−3, 1e1, 1e3, 1e5}. It can be found in Fig. 7 (a) that the 
mAP of our ASPQH will be lower if β is too small but the per-
formance of our ASPQH is generally improved when β increases. 
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Empirically, β is set as 1e1 on NUS-WIDE and the recommended 
range of β is [1e3, 1e5] on Pascal Sentence and IAPR TC-12.

γ controls the over-fitting term of objective function (3). As 
seen in Fig. 7 (b), we can find that ASPQH achieves better perfor-
mance when γ is not large. The mAP value of our model decreases 
quickly when γ is larger than 1e−3. Therefore, γ is recommended 
to choose from the range of [1e−5, 1e−3].

ρ is introduced to solve the discrete variable B of objective 
function (3). Fig. 7 (d) shows the experimental results on three 
datasets. We can observe that ASPQH can achieve stable perfor-
mance with the change of ρ in the range of [1e−5, 1e5] on the 
IAPR TC-12 dataset. Nevertheless, the performance deteriorates 
when its value is larger than 1e1 and 1e3 on Pascal Sentence and 
NUS-WIDE, respectively.

4.6. Convergence study

In this section, we explore experimentally the convergence of 
our proposed model. Fig. 8 shows the convergence curves of our 
method on three datasets when the hash code length is set to 128 
bits. The shape of convergence curves of other code lengths is sim-
ilar to that under the code length of 128 bits. In Fig. 8, the x-axis 
of each subfigure indicates the number of iterations and the y-axis 
represents the objective value. We can see that the objective func-
tion decreases quickly and rapidly converges to stable values on 
three datasets. It can be observed that our model converges within 
30 iterations on three datasets. Especially on Pascal Sentence, the 
model converges within 10 iterations.

5. Conclusion

In this paper, we proposed an adaptive semi-paired query hash-
ing method to fuse the discriminative semantic structure informa-
tion and the complementary multi-modal information for multi-
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Fig. 7. The performance variations under different parameter settings on three datasets.

Fig. 8. The convergence curves of our proposed method on Pascal Sentence (a), NUS-WIDE (b), and IAPR TC-12 (c).
modal hash retrieval. A cross-modal reconstruction learning mod-
ule is designed to enhance the semantic consistency between 
paired different modalities. In the encoding stage, we can obtain 
the joint hash codes of unpaired instances, based on the learned 
cross-modal reconstruction matrices. The self-weighting learning 
method is proposed to capture the modality difference between 
query data. Besides, we develop a fast optimization method to 
effectively solve our objective function. The experimental results 
demonstrate that our proposed method has superior retrieval per-
formance and can be effectively applied to generate the joint hash 
codes for semi-paired multi-modal data.

The main limit of this research work is that the entire algorithm 
is designed based on manually extracted features. In future work, 
we will develop new fusion strategies and discrete optimization 
methods in a deep learning framework to further improve retrieval 
performance.
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