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Abstract. Predicting the growth size of an information cascade is one
of the primary challenges in understanding the diffusion of information.
Recent efforts focus on utilizing graph neural networks to capture graph
structure. However, there is considerable variance in the information cas-
cade size (from few to million). From the perspective of efficiency and
performance, the method of modeling each node is inappropriate for
graph neural networks. In this paper, we propose a novel deep learn-
ing framework for popularity prediction called CasSampling. Firstly, we
exploit a heuristic algorithm to sample the critical part of cascade graph.
For the loss of structure information due to sampling, we keep outdegree
of sampled node in the global graph as part of the node feature into
the graph attention networks. For the loss of temporal information due
to sampling, we utilize the time series to learn the global propagation
time flow. Then, we design an attention aggregator for node-level repre-
sentation to better integrate local-level propagation into the global-level
time flow. Experiments conducted on two benchmark datasets demon-
strate that our method significantly outperforms the state-of-the-art
methods for popularity prediction. Additionally, the computation cost
is much less than the baselines. Code and (public) datasets are available
at https://github.com/Gration-Cheng/CasSampling.

Keywords: Popularity prediction · Cascade graph sampling · Graph
neural network

1 Introduction

With the improvement of communication technology, the rapid development of
online social media has promoted the propagation and interaction of massive
information. Through social media, people spread news, politics, and life hot
spots in a cascading way. Therefore, the prediction of the information propaga-
tion cascade is significant, and the effective prediction of the number of retweets
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Future growth

Fig. 1. A real-world example of a propagation graph in the Weibo dataset. The left
figure shows the propagation graph during the observation time 1 h, while the right
figure shows the propagation graph after 23 h. The blue nodes denote the observed
nodes, while the orange nodes represent the nodes that will propagate in the future.

in a period is beneficial for understanding the cascade, which has attracted con-
siderable attention in academia and industry. Cascading propagation plays a
crucial role in many downstream tasks, such as accelerating or suppressing the
spread of information [1,2], rumor detection, and even epidemic prediction. How-
ever, social media are large open platforms, and the uncertainty about cascading
effects makes popularity prediction an extremely challenging problem.

In recent years, Most of the research uses deep learning-based approaches to
learn the representation of cascades. Most of them [3–6], view an information
propagation as a sequence of events and use subgraphs or subsequences to rep-
resent the cascade. However, modeling subgraph or subsequence is difficult to
learn the cascade effect of information propagation.

Recent research has focused on using graph neural networks to capture the
cascade effect [4,6–8]. Graph Neural Networks (GNN) are able to effectively
model graph-structured data by integrating node attributes and topology. How-
ever, when facing a large number of nodes, GNNs can be computationally expen-
sive and inefficient. As shown in Fig. 1, many of the nodes within the observation
time do not bring new forwarding propagation. These nodes have little effect on
propagation. It is obvious that nodes with more propagation during the obser-
vation time will have a larger cascading effect.

Note that with these problems, existing methods confront several challenges:
(1) Some methods model each node to learn node-level representation, but it is
not efficient because of the cascade size (from few to million). (2) The method
of modeling subgraphs or subsequences is difficult to learn the cascade effect of
information propagation. (3) Time is crucial information. Existing methods lack
the extensive use of time information both at the local-level and the global-level.



72 G. Cheng et al.

To address these challenges, we proposed a novel neural network model
named CasSampling. The model focuses on sampling the cascade graph and
compensates for the loss of time and structure information due to sampling,
making the model more efficient and performing better. Our main contributions
can be summarized as follows:

– Efficiency graph representation. We implemented a heuristic algorithm
to sample the key part of cascade graph, which address the problem of the
large variable size of graphs that make it difficult to model with GNNs. To
compensate for the loss of graph structure due to sampling, we retain the
outdegree of sampled nodes as part of the sampled nodes feature. It efficiently
models cascade graphs with the large variable sizes and is effective for explicitly
capturing cascading effects.

– Multi-scale time information. We design an attention aggregator that
combines the node’s propagation embedding with the time stamp of nodes.
To compensate for the loss of time information caused by graph sampling, we
use time series to learn the global propagation time flow. We have successfully
integrated two types of temporal information for the first time, which enables
us capture the potential information between the retweet time of the active
node and the global propagation time flow, and it can more fully model the
information diffusion process.

– Evaluation on benchmark datasets. We conduct extensive evaluations on
two publicly available benchmark datasets, demonstrating that CasSampling
significantly outperforms the state-of-the-art (SOTA) baselines and reduces
the computational cost.

2 Related Work

We review the related work grouped into three main categories: featured-based,
generative process and deep learning-based approaches.

Featured-Based Approaches. It usually extracts features from specific plat-
forms, such as Arxiv; Weibo [3]; Twitter [9]; These features include user-related
features [10,11], content-related features [12], cascades structural [13,14] and
temporal features [15]. However, feature-based approaches extract features from
different platforms, making the learned features difficult to generalize into dif-
ferent scenarios, and the prediction performance heavily relies on the quality of
the hand-crafted feature.

Generative Process Approaches. It mainly regards the process of message
diffusion as an arrival time sequence [16–19]. These methods focus on modeling
the intensity function for the arrival process. The popularity prediction can be
obtained by event simulation of the intensity function. These methods demon-
strate enhanced comprehensibility, but they rely on certain assumptions, and
we do not know whether these assumptions are valid in real situations, limiting
model performance.
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Deep Learning-Based Approaches. Generally, existing methods for popu-
larity prediction mainly focus on four types of information, i.e., temporal infor-
mation, node representation, structure representation, and content.

For node and structure representation. DeepHawkes [3] integrates an inter-
pretable Hawkes process for information cascade prediction. With the booming
development of graph neural networks (GNN), CasCN [4] uses it to model the
structural information of cascade subgraphs (via cascade Laplacian). CasFlow
[20] uses a variational autoencoder to learn the uncertainty of the cascade. Tem-
pCas [5] exploits a heuristic algorithm to sample critical paths and utilizes some
handcraft features as compensation for the sampled graph. All the work above
depicts the subgraph of participating users. However, modeling subgraphs or
subsequences is difficult to learn the cascade effect of information propagation.
CouledGNN [7] uses the global propagation graph to capture the interaction
between node activation states and diffusion; CasGCN [21] considers that the
cascade effect is bidirectional, uses in-coming and out-going adjacency matrices
as the representation of graph structure, and combines the time information with
the graph structure by attention mechanism. These GNN-based methods model
each node for graph embedding. However, from the perspective of efficiency and
performance, the method of modeling each node is inappropriate for GNN.

For temporal information modeling, DeepHawkes [3] introduced a nonpara-
metric time decay function into the path modeling of recurrent neural net-
works. DFTC [22] represents temporal information by time series, which used a
Convolution-1d neural network for capturing short-term outbreaks and LSTM
for long-term fluctuations. TempCas [5] improves the DFTC [22] by combining
the short-term and long-term rather than capturing them separately. However,
these methods do not fully utilize global-level and local-level time information.

Note these problems. We propose a novel model, called CasSampling, which
implements a heuristic algorithm to sample the cascade graph and compensate
for the loss of time and structure information caused by sampling. Compared
with the same model, we sample cascade at the graph-level for the first time and
fully utilize multi-scale time information. It achieved better performance and
less computation cost.

3 Preliminaries

We now present the essential background and formally define the popularity
prediction problem.

Definition 1 (Cascade Graph). Suppose that we have n posts, P = {pc, c ∈
[1, n]}. For each post pc, there is a cascade graph denoted by Gc = (Vc, Ec, Tc),
where Vc is a set of nodes that have been involved in the cascade during the
observation time T , a directed edge (vi, vj) ∈ Ec represents that node vj retweet
from node vi, and a tuple of node time label (vi : ti) ∈ Tc denotes the time elapsed
between the original post and node v’s retweet.
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Definition 2 (Growth size). It is defined as the amount of cascade growth
number over observation time window T after it has spread for Δt. According
to Definition 1, we obtain Gc = (Vc, Ec, Tc), Tc < T . Our task is to predict the
growth size ΔSi of a cascade after a given time interval Δt. The growth size can
be defined as ΔSi = |VT+Δt

i | − |VT
i |.

Fig. 2. The framework of CasSampling for popularity prediction.

4 Method

Before introducing the details of the CasSampling model, we present the overall
framework of CasSampling in Fig. 2. It contains four major parts:(1)A heuristic
algorithm to sample the critical parts of a graph. (2) Local-level propagation
embedding model graph structure with GAT and uses the attention aggregator to
combine it with node time information. (3) Global-level time flow representation
adopts LSTM on time series to capture the propagation trend. (4) Prediction
layer concatenates local-level propagation and global-level time flow into the
self-attention layer to fuse each other and feed into Multilayer-Perception(MLP)
to predict the increment size.

4.1 Graph Sampling

Efficient node representation is challenging due to the variable size of cas-
cades(from few to million). Specifically, the millions of nodes for the GNN are
computation expensive. To achieve an efficient graph representation, we used
rule-based graph sampling to reduce the number of nodes while preserving the
original graph information as much as possible.
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Algorithm 1 Graph sampling
Input: A cascade graph Gc, degree vector D of Gc; the maximum number of nodes K.
Output: Sampled graphGsampled

c and out-degree vector Dsampled of Gsampled
c

1: Vc, Ec, Tc ← Gc

2: if |Vc| < K then
3: return Gc, D
4: end if
5: Dsorted,Vsorted=sort(D,Vc, Tc)# Sort by Rule 1 and Rule 2
6: Dsampled,Vsampled=selectTop(Dsorted,Vsorted,K)
7: Esampled ← ∅, Tsampled ← ∅

8: for each {vi, vj} in Ec do
9: if vj /∈ Vsampled then

10: continue
11: else if vi ∈ Vsampled then
12: Esampled ← Esampled ∪ {vi, vj}
13: else
14: vk=findAncestor(vi,Ec,Vsampled) # Find the nearest ancestor of node vi in

the Vsampled.
15: Esampled ← Esampled ∪ {vk, vj}
16: end if
17: end for
18: for each v in Vsampled do
19: Tsampled ← Tsampled ∪ (v : T (v))
20: end for
21: Gsampled

c = {Vsampled, Esampled, Tsampled}
22: return Gsampled

c ,Dsampled

Given a cascade graph Gc and the adjacency matrix Ac.The outdegree vector
D = {di, i ∈ [1, n]} can be computed with:

di = log2(
N∑

j=1

aij), (1)

where N is the number of nodes and aij is one element of Ac. The di denotes
the outdegree of node i after logarithmic scaling.

Since the node with a larger out-degree is more critical, and according to
the Hawkes process [3], the point closer to the occurrence of time has the more
significant influence, there are two rules for sorting:

Rule 1: Sort the Vc by the outdegree D of nodes.(from large to small).
Rule 2: For nodes with the same outdegree, make a second sort according to
their time(from late to early).

To reduce computation costs and improve performance, we sampled nodes
based on their sorted out-degree vector and selected the top K nodes. However,
this process may result in some nodes missing parent nodes. To address this
issue, we identified the nearest ancestor node that was not filtered out and used
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it as the parent node. To preserve the original graph information, we used the
out-degree of the original graph node as the feature for the sampled node.

The process of graph sampling is shown in Algorithm 1.

4.2 Local-Level Propagation Embedding

Graph Attention Layer. Recently, Graph neural networks have been
advanced in graph learning. To capture the local information and achieve node-
level representation, we utilize graph neural networks to learn hidden informa-
tion among cascade nodes. Each tweet has a different cascade graph which is an
inductive task, so we choose Graph Attention networks [23] (GAT) to learn the
graph structure.

The input of GAT consists of two parts, adjacency of the graph and the node’s
feature matrix. After graph sampling, we obtain the Gsampled

c and Dsampled of
a cascade. To retain the original graph information, we reserve the outdegrees
of nodes as part of nodes feature to learn the node influence and the size of the
original cascade. The node input feature H0 can be defined as:

H0 = A + diag(Dsampled) =

⎡

⎢⎢⎢⎣

− h0
1 −

− h0
2 −
...

− h0
N −

⎤

⎥⎥⎥⎦ , (2)

where A is the adjacency matrix of Gsampled
c . diag(Dsampled) indicates diagonal-

izing the Dsampled vector. h0
i ∈ R

F is the input feature of node i, F = N , and
N is the number of nodes.

For the adjacency matrix, we add self-connection to prevent loss of self-
information during aggregation. The Adjacency Ã is formulated as:

Ã = A + In, (3)

where In ∈ R
N×N is an identity matrix.

The main idea of GAT is to aggregate node features by calculating the atten-
tion weight between connected nodes. After n layers of GAT, the node receives
messages from other nodes within n-hops. The aggregate function is as follows:

hn
i = σ(

∑

j∈Ni

αijWhn−1
j ), (4)

where Ni is the neighborhood of node vi in the graph, which can be obtained
from Ã. The hn−1

j represents embedding of node j after n-1 layers of GAT. The
αij is the attention score between node i and node j. It can be calculated by:

αij =
exp(LeakyReLU(aT [Whi‖Whj ]))∑

k∈Ni
exp(LeakyReLU(aT [Whi‖Whk]))

, (5)
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where a ∈ R
2F

′
denote the learnable parameters. LeakyReLU is an activation

function. ‖ is the concatenation operation. A weight matrix W ∈ R
F

′ ×F is
shared to every node.

We do mean pooling with the output Hn of the n layers of GAT, and pooling
the feature of each node.

Hn
pooling = MeanPooling(Hn). (6)

The final graph embedding can be expressed as: Hn
pooling = [hn

1 , hn
2 , . . . , hn

N ]T ,

Hn ∈ R
N , where hn

i ∈ R is the embedding of node i.

Node Time Information. To integrate graph structure and global tempo-
ral flow, we preserve the original time information of nodes instead of incor-
porating it into GAT input features. We utilize the attention aggregator to
merge node structure and time information as the graph represents. Let T ′ =
[ht

1, h
t
2, . . . , h

t
N ]T , T ′ ∈ R

N denote the time stamp of the node, which is obtained
from Tsampled. h′

i = [hn
i ‖ht

i] represents node i concatenating GAT output and
time information.

ej
i = vT tanh(Wa[h

j
i‖h′

i]), (7)

where hj
i denotes one of the node feature of h′

i. Wa and v denote the learnable
parameter.

αj
i =

exp(ej
i )∑

k∈{t,n} exp(ek
i )

, (8)

where αj
i represents the attention score of hij .

Aggregate the features of node i, and the aggregate function is as follows:

hi =
∑

j∈{t,n}
αj

i h
j
i . (9)

HG = [h1, h2, . . . , hN ],HG ∈ R
N contains nodes structure embedding and

nodes time information.

4.3 Global-Level Time Flow Representation

Given a fixed interval of time ts, We have T/ts time slots. From Gc, we can
get the global graph node’s time information, then calculate the time slot of
each node. Let RT = {r1, r2, . . . , rT/ts}, RT ∈ R

T/ts denote the temporal flow
sequence. We utilize LSTM to capture the time flow information.

HT = LSTM(RT ), (10)

where HT ∈ R
T/ts is the global propagation time flow representation.
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4.4 Prediction Layer

Each node in HG represents graph structure information. HT contains global
temporal information. We concatenate the two parts into Self-Attention [24]
layer to fuse each other and feed into MLP to predict the increment size.

H = HG ⊕ HT , (11)

H ′ = Self Attention(H) + H, (12)

ΔSi = MLP(H
′
), (13)

Our ultimate task is to predict the increment size for a fixed time interval,
which can be done by minimizing the following loss function:

L(ΔSi,ΔŜi) =
1
P

P∑

i=1

(log2 ΔSi − log2 ΔŜi)2, (14)

where P is the number of posts, ΔSi is the predicted amount of growth, ΔŜi is
the ground truth.

4.5 Complexity Analysis

The complexity based on the sparse matrix operation of GAT is O(|Vc|F ′F +
|Ec|F ), where F is the number of input features and F ′ is the number of output
features. The complexity of the node-level time attention mechanism is O(|Vc|).
Compare with the subsequence-based method, our method can be parallelized.
The complexity of global time flow representation is O(T/ts). The complexity of
Self-Attention layer is O((|Vc| + T/ts)2). Sum up, the complexity approximates
to O(|Vc|F ′F + |Ec|F + (|Vc| + T/ts)2).

5 Experiments

To evaluate the performance of our model, we compare CasSampling with several
SOTA methods on two benchmark datasets under various evaluation metrics.

5.1 Datasets

Sina Weibo. The dataset [3] comes from Sina Weibo, a major microblogging site
that is similar to Twitter. It contains posts that were published between 0:00 to
24:00 on June 1, 2016.

Twitter. The dataset is collected by [9] and contains public English written tweets
published between Mar 24 and Apr 25, 2012.

The observation time T for Weibo is set to 0.5 h, 1 h and 2 h, and 1 days,2
days and 3 days for Twitter. We select 24 h as the prediction time for the Weibo
dataset and 32 days for the Twitter dataset. Following earlier methods [3,20],
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we filter out cascades whose |Vc| < 10, and due to the effect of diurnal rhythm in
Weibo, we focused on tweets published between 8 a.m. and 6 p.m. to give each
tweet at least 6 h to gain retweets. For Twitter, we only tracked tweets published
before Apr 10, ensuring at least 15 days for each tweet to grow adopters. For
each of two datasets, we randomly split it into training set (70%), validation set
(15%), and test set (15%). The statistics and visualization of these two datasets
are shown in Table 1 and Fig. 3.

5.2 Baseline

To validate CasSampling’s performance in popularity prediction, we chose the
following SOTA baselines for comparison:

Table 1. Descriptive statistics of two datasets.

Dataset Ori. Cascade Avg. path length Avg. popularity 0.5 h/1 day 1 h/2 days 2h/3days

Train Val Test Train Val Test Train Val Test

Weibo 119313 1.217 171.098 21461 4598 4598 27353 5860 5860 32943 7059 7059

Twitter 88440 1.201 142.672 9640 2065 2065 12740 2729 2729 15777 3380 3380

Fig. 3. Cascade size distribution of each dataset. In the 1st column, each figure shows
the distribution of cascade sizes. The 2nd column denotes the mean sum cascade size
changing over observation time. The 3rd column describes the mean hourly cascade
size change over the observation time.

Feature-Linear and Feature-Deep. We have extracted all the predictable
features from recent research [10,12,13,15]. Then, we feed it into a linear regres-
sion model and a fully-connected layer to predict the increment size.

DeepHawkes [3]. DeepHawkes considers three important aspects of the Hawkes
process: user influence, time decay effect, and self-exciting mechanism.
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CasCN [4]. CasCN is the first GNN-based framework exploiting both structural
and employs a sequence of sub-cascade graphs with cascade Laplacian.

CasFlow [20]. CasFlow combines the local structure of cascade graph with
global social collaboration network.

TempCas [5]. TempCas sample the critical path of cascade and utilizes hand-
crafted features to compensate for structural loss. It uses LSTM and attention
CNN to model long-short term time information.

5.3 Evaluation Metrics

Following existing works [3,4,25], we use Mean Square Logarithmic Error
(MSLE) and Symmetric Mean Absolute Percentage Error (SMAPE) for pre-
diction performance evaluation, which are defined as:

MSLE =
1
P

P∑

i=1

(log2 ΔSi − log2 ΔŜi)2, (15)

SMAPE =
1
P

P∑

i=1

|log2 ΔSi − log2 ΔŜi|
(log2 ΔSi + log2 ΔŜi)/2

, (16)

where P is the number of posts, ΔSi is the predicted amount of growth, ΔŜi is
the ground truth.

Table 2. Results on Weibo and Twitter dataset.

Model Weibo Twitter

0.5 h 1 h 2 h 1 Day 2 Days 3 Days

MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE

Feature-Linear 3.025 0.305 2.653 0.323 2.451 0.332 9.123 0.698 6.729 0.632 5.833 0.602

Feature-Deep 2.891 0.281 2.612 0.319 2.332 0.311 7.801 0.669 6.330 0.599 5.439 0.574

DeepHawkes 2.674 0.277 2.538 0.303 2.312 0.302 6.874 0.635 5.085 0.545 4.281 0.463

CasCN 2.660 0.275 2.613 0.323 2.452 0.310 7.121 0.638 5.438 0.560 4.482 0.463

CasFlow 2.418 0.247 2.298 0.257 2.003 0.281 6.989 0.625 5.143 0.552 4.102 0.449

TempCas 2.332 0.243 2.219 0.248 2.001 0.278 6.232 0.611 4.332 0.525 3.680 0.455

CasSampling-Struct 2.553 0.246 2.483 0.283 2.339 0.307 7.329 0.667 5.773 0.591 4.681 0.483

CasSampling-St.ND 2.793 0.287 2.681 0.312 2.539 0.352 7.811 0.687 5.983 0.610 4.997 0.498

CasSampling-TimeFlow 2.388 0.244 2.241 0.248 2.021 0.281 6.322 0.602 4.349 0.521 3.757 0.457

CasSampling-NNT 2.311 0.244 2.178 0.247 1.988 0.273 6.198 0.599 4.298 0.516 3.658 0.451

CasSampling 2.194 0.227 2.113 0.243 1.883 0.276 5.908 0.594 4.125 0.512 3.433 0.447

Table 3. Computation cost on Weibo dataset with 1h observation time.

Models Time cost Parameter

Preprocessing Trainning Inference

DeepHawkes ∼1 min ∼40 min 323 samples/s ∼103M

CasCN ∼3 h ∼2 h 158 samples/s ∼210M

CasFlow ∼28 min ∼15 min 1432 samples/s ∼11M

TempCas ∼6 min ∼13 min 1591 samples/s ∼12M

CasSampling ∼2 min ∼5 min 6328 samples/s ∼720K
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5.4 Experiment Settings

Parameter Settings. For baselines, we follow the settings of their works. In
our experiment, the maximum number of nodes in cascade graph K is set to
128. For local propagation embedding, CasSampling contains 2 layers of GAT,
the hidden dimension feature is set to 512 and the output dimension of the node
feature is set to 8. For the global propagation time flow, the number of time
slots is set to 64. For the prediction layer, the number of neurons in each layer
of the MLP is {64,32}. The optimizer is Adam with learning rate = 0.0001. We
set the batch size as 64 and the training epochs as 50.

Experimental Environment. We ran the experiment on a PC with an AMD
5600X 3.70 Ghz, an NVIDIA GTX 3090 24 GB, and 64 GB memory. CasSampling
was trained by using PyTorch 1.11.0.

6 Results and Analysis

In this section, we report experimental results and conduct further analysis.

6.1 Experiment Results

The experimental results are shown in Table 2. Our approach outperforms the
baseline methods for all metrics. CasCN and DeepHawkes only focus on node-
level modeling, which is inadequate for large graphs. CasFlow combines cascade
graphs with a global social network for structure learning. However, the method
above does not take into account the importance of time information, which
may be the reason to limit their performance. TempCas implements a heuris-
tic algorithm to sample critical paths, but compensates for structural losses
using hand-crafted features without alignment with structural representation.
Although it uses LSTM and attention CNN to model long-short term global
propagation time information, the node-level time information is not integrated
into the structure representation, which may result in poor integration between
the structure embedding and the time-flow representation.

Our proposed CasSampling model beats all counterparts on all datasets.
Compared with the classic models DeepHawkes and CasCN, our method has

Table 4. Effect of varying maximum number of node K on the performance of the
model.

Model Weibo Dataset

MSLE

0.5 h 1 h 2 h

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 K = 64 K = 128 K = 256

CasSampling-Struct 2.612 2.553 2.501 2.551 2.483 2.432 2.389 2.339 2.302

CasSampling 2.282 2.231 2.228 2.158 2.113 2.128 1.924 1.883 1.891
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(a) Global graph (b) Sampled graph

Fig. 4. An example of graph sampling. The left is the original global graph, which has
over 3000 nodes. The right is the sampled graph, with colored edges and points being
selected (The max number of node K is 128). The depth of color and the size of nodes
indicate the activity of nodes, which is derived from the degree of sampling nodes in
the global graph.

improved by 10%–25% on each evaluation metrics. Compared with the recent
SOTA models (CasFlow, TempCas), our method also has improved by 5%–15%
on MSLE. This shows that our method is significantly better than the baseline
in information popularity prediction.

We compute the time cost and parameter for baselines and CasSampling, as
shown in Table 3. It demonstrates that CasSampling is more efficient compared
with all the SOTA baselines.

Table 4 illustrates the impact of different maximum node number of K on
the model’s performance. As K increases, we observe a consistent improvement
in the performance of CasSampling-Struct, since a larger number of nodes leads
to more temporal information being captured. However, the overall performance
of the model is best at K = 128, indicating that an appropriate value of K can
facilitate better capturing of cascading effects.

6.2 Ablation Study

To study the relative importance of each module in the CasSampling, we conduct
ablation studies over the different parts of the model as follows:

– CasSampling-Struct. It only uses the local-level propagation embedding
part to predict increment size.

– CasSampling-St.ND. It only uses the local-level propagation embedding
part and removes the outdegree feature of node.

– CasSampling-TimeFlow. It only uses global-level time flow representation
to predict increment size.
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– CasSampling-NNT. It removed the attention aggregator module of node
time information.

The results are shown in Table 2. CasSampling-Struct demonstrates that
the sampled graph can still represent global propagation. Figure 4 is an example
of graph sampling. The performance of CasSampling-St.ND decreases con-
siderably, which shows that the importance of maintaining the outdegree of the
node plays a great role in compensating for the graph structure. The perfor-
mance of CasSampling-NNT is not as good as CasSampling, which proves
that adding time information to nodes can make local-level propagation embed-
ding better integrated with global-level time flow representation. CasSampling-
TimeFlow shows an interesting result that only time information is better than
most models, so we did a further analysis to explore the underlying reason.

6.3 Further Analysis

We select samples based on the average path length of the graph to further
analysis the time-flow based method and graph-embedding based method.

We link the performance with the graph structure. Figure 5 indicates that
CasSampling-TimeFlow’s performance slightly decreases with longer average
path lengths in the cascade graph, while CasSampling-Struct performs better
under these conditions. This suggests that CasSampling-Struct can learn the
intrinsic information of complex cascades, while CasSampling-TimeFlow can-
not.

Fig. 5. The Relationship between performance and average path length of cascade
graph.
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7 Conclusion

We present CasSampling, a new deep learning framework for efficient popu-
larity prediction. It captures cascade graph structure and leverages multi-scale
time information. CasSampling consists of four main components: (1) a heuris-
tic algorithm for sampling critical parts of a graph, (2) a local-level propagation
embedding model that uses GAT and an attention aggregator to combine graph
structure with node time information, (3) A global-level time flow representation
using LSTM to capture propagation trends, and (4) a prediction layer that fus-
ing local-level propagation and global-level time flow and feeds it into an MLP
to predict the increment size. We conducted extensive experiments on Weibo
and Twitter datasets, and achieved SOTA performance on information cascade
size prediction with much less computation cost than the baselines.

Our future work mainly focuses on the following aspects: (1) Exploit a bet-
ter strategy to sample graph. (2) Explore the relationship between structural
information and temporal information, and better integrate each other.
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