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Abstract
In order to quickly find an appropriate composition of services that meet the individual user’s requirements in the Internet big
data, this paper proposes an improved particle swarm service composition method based on prior knowledge. This method
firstly mines the service composition partial segments with certain frequencies of usage from a large number of historical
service composition solutions, i.e. the service pattern.While receiving the user’s service composition requirement, thismethod
uses the service pattern matching algorithm proposed in this paper to match the corresponding service patterns as a partial
solution of this composition requirement. Then the method proposes an improved particle swarm algorithm for the part that
do not successfully match the corresponding service patterns. This improved particle swarm algorithm has a mechanism to
escape from the local optima. Finally, the method integrates the partial solutions of the two aspects into a complete solution,
i.e. a complete service composition solution. This paper compares the optimality, time complexity and convergence with
other related service composition optimization algorithms through simulation experiments. According to the analysis of the
experimental results, the method proposed in this paper shows good performance in three aspects: optimality, time complexity
and convergence.

Keywords Service composition · Service pattern · Particle swarm algorithm · Quality of service

Introduction

With the development of cloud computing, IoT technologies
(Sailer, 2014) and IoD (Abualigah, 2021), offline services are
more and more employed online by virtualization technol-
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ogy to cooperate with online services (Mladen, 2008; Zhang,
2020). The service requirements grew with the increasing
complexity, which formed the IoS (Momeni, 2021), Big
service (Zhang, 2020), and cross-border services (Falch,
2020). Therefore, service composition is required in order
to meet the complex needs of users. The first challenge
is to quickly and efficiently construct a service composi-
tion plan via composition technology to face the complex
large number of available services. Since the single web
service often failed to meet customer needs properly, the
service composition becomes urgent (Klai, 2016). During
the service composition, each type of service has numer-
ous candidate services with the same function but different
Quality of Service (QoS). The QoS-aware service composi-
tion (QoS-SC) attracts both academic and industrial attention
recently. CurrentWeb compositionmethods aremostly based
on QoS-aware Web service composition methods. There are
various solutions to the QoS-aware Web service composi-
tion optimization problems, which can be divided into three
categories (Huo et al., 2015):

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-02032-w&domain=pdf
http://orcid.org/0000-0003-2176-2998


Journal of Intelligent Manufacturing

(1) The local search method, different QoS attribute values
are mapped to a single index through an aggregation
function, and specific service is selected from each can-
didate service set with reference to multiple indexes to
form a service composition plan. This method is only
effective for compositions with a small number of QoS
attribute restrictions but not for those with large numbers
(Cook, 2021; Maatouk et al., 2021).

(2) The global optimization method transforms the entire
service composition into a hybrid linear programming
problem with the solution. It has certain restrictions on
the algorithm for reaching the optimal services combina-
tion. The objective function to be solved must be linear
and cannot be used to completely solve the Web service
composition problem (Gao, 2021; Kurokawa, 2021; Liu
et al., 2021).

(3) The swarm intelligent optimization algorithm overtakes
the shortcoming of the global optimization algorithm.
It is a popular method currently used for Web service
composition (Abualigah et al., 2021, 2022; Liu et al.,
2019; Kashyap et al., 2020).

However, These swarm intelligence algorithms have the
problem of trapping at local optima to some extent. To face
the massive requirements and available services, the perfor-
mance of the aforementioned service composition methods
cannot satisfy the needs of users. Therefore, it is necessary
to improve the swarm intelligence algorithms according to
the features of the service composition problems, in order to
make it perform better in the service compositions. On the
other hand, efficiencies of the service composing could be
improved once the huge number of existing service history
records is used as a prior knowledge to guide the service
composing.

This paper introduces a productive and effective method
for service compositions. The proposed approach uses
domain knowledge to mine the relationships and fixed col-
locations between services in order to build large-grained
service units (service patterns). Since the service patterns
are large-grained, the search space is reduced. The service
patterns are fixed collocations, which are verified by the
historical service composition solutions. Hence, the users’
satisfactions are the higher. Meanwhile, the improved par-
ticle swarm optimization algorithm composite services for
the partial requirements those are not covered by the service
patterns. It can effectively overcome the dilemmas of easy
trapping at local optima, such that the efficiencies of compo-
sitions can be improved. In this work, the experiment results
on the public service datasets demonstrate that the proposed
method has high performance on service composition.

The rest of this study is organized as follows. “Related
work” section describes the introduces swarm intelligence

algorithms of service compositions. “Web service compo-
sition problem descriptions” section describes the service
composition problem and the construction of service pat-
terns. “Proposed IDPSO algorithm” section explains the
proposed method of improved discrete particle swarm opti-
mization (IDPSO) and improved discrete particle swarm
optimization based on prior knowledge (PK-IDPSO) algo-
rithms. In “Numerical experiments” section, the superiority
of the proposed method is evaluated by comparing the per-
formance with the state-of-the-art algorithms.

Related work

The QoS-SC problem has three folds: optimality, conver-
gence and time complexity. Time complexity indicates the
time-consuming of the algorithm; the convergence indicates
the speed of the algorithm’s optimizationwhile the optimality
reveals its optimization ability. Generally, the time complex-
ity and the optimality are contradictory, which means that
seeking high time efficiency will sacrifice the optimality of
the algorithm, and vice versa. Therefore, reaching a balance
between those twometrics is the key to the customer needs in
the service composition. In addition, improving the conver-
gence of the algorithm is also important to customer needs.
The challenge is to manipulate the corresponding specific
services from the candidate set to meet the QoS restric-
tions proposed by customers, which is an NP-hard problem
(Mabrouk, 2009). The current swarm optimization algorithm
is effective for continuous problems, but it is limited for dis-
crete problems such as web service composition. All swarm
optimization algorithms have encountered the local optimal
issue because that they follow a certain direction and order
during the optimization. Jin et al. (2015) proposed a service
pattern that uses the genetic algorithms for service com-
position solutions by selecting a service composition with
association awareness in cloud manufacturing. Wen et al.
(2013) used the Particle Swarm Optimization (PSO) algo-
rithm to solve the Web service composition optimization
problem. The PSO algorithm compared with the genetic
algorithm, it benefits from its fewer parameters and fast
convergence, and showed better performance for the prob-
lems such as Optimizations. However, it also traps in the
local optimal problem (Chen, 2014). Zhang et al. (2015) pro-
posed a method to classify candidate services for large-scale
Web service composition.This method proposes a reduc-
tion model to reduce the size of the service candidate set,
in an attempt to reduce the search space of the problem
to improve the optimization efficiency. This method needs
to reduce the new candidate service set according to the
new service composition problem every time, so that reduce
the overall efficiency of the algorithm. Liu et al. (2019)
proposed the Artificial Bee Colony (ABC) algorithm. The
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Artificial bee colony algorithm is an algorithm constructed
to simulate the behavior of bees in the process of collect-
ing honey. Compared with the PSO algorithm, the ABC
algorithm has fewer parameters, which gives better perfor-
mance regarding time complexity, but its performance in
optimality is slightly lower. Zhang et al. (2018) proposed
a task-granularized quality-constrained-aware service com-
position method. They divide the service composition model
into four layers. The basic layer is related to the candidate
service set of the service composition where the top layer
is related to the task. The granular layer corresponds to the
tasks that are segmented in the service composition. The lay-
ered task granulation method can improve the composition
efficiency, but it breaks the overall constraints of the ser-
vice composition plan, such that the fact that the service
composition plan found may not be optimal. Zhang et al.
(2019) introduced an extended flower pollination algorithm
(FPA) for solvingQoS-SC problems. Zhang et al. (2021) pro-
posed a novel approach to construct quality relevance index
graph to realize efficient query of quality relevance. Jatoth
and Gangadharan (2019) proposed a modified invasive weed
optimization (IWO) algorithm to obtain the optimal solu-
tion. Khanouche et al. (2019) presented an approach based
on the k-means clustering technique to group candidate ser-
vices into clusters and a search tree to find the near-optimal
solution. Based on service dependency graph, Zhang et al.
(2021) introduced a top-k service composition approach to
find suitable services in IoT environments. Chen et al. (2016)
considered the QoS difference compared with the customer’s
requirement (QoS risk) as an individual objective besides
either each QoS attribute and introduced an optimization
method named Efficient-DominanceMulti-Objective Evolu-
tionary Algorithm (EDMOEA) to solve QoS-SC problems.
Zhou and Yao (2017) presented energy consumption formu-
lation formulas for software/hardware cloud services. The
global QoS value and energy consumption are considered
as two objectives to be optimized. Then a Multi-Objective
Hybrid Artificial Bee Colony (MOHABC) method is pro-
posed to generate the Pareto optimal solutions. Huo et al.
(2017) presented a novel multi-objective service composi-
tion model that takes the global QoS value and the cost of
composite services as two objectives for QoS-SC problems.
Wang et al. (2022) proposed a service composition excep-
tion handling adaptive adjustment (SCEHAA) algorithm
based on the improved ant colony optimization algorithm
(ACO) and applied to address QoS-SC problems. Liang
et al. (2021) are dedicated to exploring possible applica-
tions of deep reinforcement learning(DRL) in QoS-SC and
a logistics-involved QoS-aware DRL-based QoS-SCmethod
is proposed. Seghir and Khababa (2018) proposed a hybrid
genetic algorithm (HGA) to solve QoS-SC problems. This
algorithm combines two phases to perform the evolution-
ary process search, including genetic algorithm phase and

fruit fly optimization phase. Li et al. (2020) proposed a
SDF(service domain features )-oriented genetic algorithm
to effectively create a manufacturing service composition
with large-scale candidate services. Li et al. (2021) based
on the core principle of evolutionary methods, first devel-
oped an elite evolutionary strategy (EES) and then utilized
it to advance convergence speed and ability of Harris hawks
optimization(HHO) to jump out of the local optimum. San-
gaiah et al. (2020) proposed an efficient method for solving
the QoS-SC problem using biogeography-based optimiza-
tion (BBO). BBO is a very simple algorithmwith few control
parameters and effective exploit. Sefati and Navimipour
(2021) proposed an effective way based on a hidden Markov
model (HMM) and an ant colony optimization (ACO) to
solve the QoS-SC problem by enhancing the QoS.

The above service composition algorithms do not focus on
balancing the global and local search abilities in the process
of algorithmsoptimization, and they donot consider reducing
the search space with prior knowledge. This paper proposes a
Web service composition method based on prior knowledge
and an IDPSO algorithm. A set of service patterns has been
identified from a large number of historical service records.
The service patterns are fragments of service processes that
frequently appear in historical service plans. Proper use of
the service patterns could make a considerable part of the
service demand process without immediately selecting unit
services. Only service patterns matching are required. More-
over, for the fragments of the service demand process that
did not match successfully, the IPSO algorithm is performed
instantaneously to apply local service combinations.Amech-
anism is introduced by the IPSO algorithm to avoid the local
optimal. Both theoretical analysis and experimental results
show that the proposed method achieves better performance
in terms of time complexity and optimality for web service
composition optimization.

Web service composition problem
descriptions

QoS

The QoS is described by:

QoS = (p, r , a, rep, t, rel) (1)

where p is the service price, r is the response time, a is the
availability that refers to the ratio of the number of successful
executions out of total number of executions, t is throughput,
and rel is reliability that refers to the ratio of the time the
service can run to the total time, rep is reputation which is
calculated by:
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rep =
(

n∑
i=1

sci

)
/n (2)

Where rep is the average value of the user’s n evaluation
scores (sc1, sc2, ..., sci , ..., scn) of the current service.

Service composition problem

The purpose of the service composition is to obtain a set
of optimal services to form a composite service for a spe-
cific purpose under the satisfaction of users’ requirements
and overall QoS constraints. The composite service can be
expressed by:

C S = (T , R, QoS, QC, W , E F) (3)

where T = {t1, t2, ..., t j , ..., tn} is the set of tasks that
constitute the composite service, the relation R ⊂ T ∗ T
represents the set of timing relations between tasks, QoS
is the overall quality of the composition service. QC =
C(p), C(r), C(a), C(re), C(t), C(rel) represents the qual-
ity constraints thatmust bemet by the composite service,w =
{w1, w2, ..., w6} is the weight corresponding to each sub-
attribute in the set QoS s.t.

∑6
i=1 wi = 1 . E F is the

composition service quality evaluation function, i.e., the opti-
mality function.

Task t j in task set T is an abstract service, a specific

web service as j
k is selected from the candidate service set

C SSj of t j to replace the abstract service C SSj , where

as j
k represents the k − th candidate service in C SSj ,k ∈

{1, 2, ..., ‖C SSj‖}. The generation process of the composite
service is to find the composite service process that meets
the customer’s needs. The process of generating composite
services is mainly divided into two steps, service selection
and service composition. In the service selection process,
the task T submitted by the customer is abstracted into
multiple subtasks{t1, t2, ..., t j , ..., tn}, and each subtask has
a different execution relationship. The Workflow Manage-
mentCoalition (WFMC)defines four basic execution relation
models, Sequence, Parallel, Selective and Circular. The Par-
allel, Selective and Cycle models can be transformed into
Sequential models. The sequential models are selected in
this work. Since customers have specific requirements for
QoS attributes, according to the overall QoS value of the
combined service, the combined evaluation function E F is
used to evaluate the solution of the combined service and the

best combination is selected. Since the value range of each
attribute of QoS ofWeb service is different, the QoS attribute
value is normalized (Wen et al., 2013). The smaller the values
of each sub-attribute of QoS, the better the service.

Construction of service pattern

The FP-Growth (Liu, 2017) is employed to construct service
patterns (Xu, 2020). For new customer task processes, the
existing service patterns are first matched. Then, the opti-
mization algorithms are used to perform partial tasks for
unmatched task process fragments. Instead of combining all
the optimization algorithms of the task process at the begin-
ning, the introduction of service pattern can greatly improve
the efficiency of service composition. The service pattern can
be represented by:

S P = (I D, PaSeq, PaFre) (4)

where ID is the identity number of the service pattern, and
uniquely represents the specified service pattern:

PaSeq = {< as1, as2 >,< as2, as3 >, ..., < asi ,

asi+1 >, ..., < asn−1, asn >} (5)

There is a sequence relationship between asi and asi+1,
whose order cannot be reversed. PaFre represents the fre-
quency of service patterns, as shown in Fig. 1

Demandmatching based on service pattern

Two indicators, Coverage and Redundancy, are used to
evaluate the coverage and efficiency of the service pattern.
The Coverage cov(T , S Pi ) is the ratio of the number of
unit tasks in the service pattern S Pi that can cover the task
T ,‖Cspi ‖, and the total number of unit tasks in the task
process proposed by the customer, CT , i.e. cov(T , S Pi ) =
‖Cspi ‖/CT , cov(T , S Pi ) ∈ [0, 1]. The Coverage reflects the
extent to which a service pattern fits the customers tasks. The
Redundancy redu(T , S Pi ) is the ratio of the number of unit
services that have not been successfully covered in the ser-
vice pattern, ‖AS Pi ‖ − ‖CS Pi ‖ to the total number of unit
services in the service pattern,‖AS Pi ‖, i.e. redu(T , S Pi ) =
‖AS Pi ‖ − ‖CS Pi ‖/‖AS Pi ‖, redu(T , S Pi ) ∈ [0, 1]. In the
actual service composition process, some unit services in the
service pattern do not cover the unit services in the task flow.

Fig. 1 Schematic diagram of
PaSeq
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Fig. 2 Example of coverage and
redundancy of the service
patterns

The Redundancy can be used tomeasure the degree of redun-
dancy of the service pattern. The higher the redundancy, the
more invalid unit services and higher cost. Fig. 2 shows an
example of coverage and redundancy.

The first step of the proposed PK-IDPSO algorithm is
to obtain a set of matching tasks based on the service pat-
terns, using the mapping algorithm SP-Mapping to target the
task flow in the customer’s requirements. The SP-Mapping
algorithm is based on the KMP algorithm (Hongwei et al.,
2006), which is a string pattern matching algorithm. Pattern
matching of strings is a common operation. The so-called
pattern matching can be simply understood as looking for
a given pattern (string) in the target (string), returning the
first character position of the first substring matched by the
target and the pattern. Usually, the target string is relatively
large while the pattern string is relatively short. The KMP
algorithm is an improved string-matching algorithm, which
uses the information after the matching failure to minimize
the matching times between the pattern string and the main
string to achieve the purpose of fast matching. The specific
implementation is through a next() function, which itself
contains the local matching information of the pattern string.

The time complexity of theKMPalgorithm isO(m+n),where
m is the length of the main string and n is the length of the
substring (Hongwei et al., 2006).

The SP-Mapping algorithm selects the corresponding ser-
vice patterns to cover the task fragments in the task process.
Generally, a service pattern covers some tasks in the task
process. A task process always expects more tasks to be
covered by a service pattern. The fine-grained matching is
adopted, i.e., all unit services in a service pattern need to
cover the tasks in the task process such that the redundancy
is zero, redu(T , S Pi ) = 0. In order to make the cover-
age rate of the specified service pattern cov(T , S Pi ) greater,
the SP-Mapping algorithm first sorts the service patterns in
descending order according to their lengths, so as to match
the service patterns with a larger coverage rate. Fig. 3 shows
an example of service pattern mapping.

After the task flow T = to, tp, ..., tz is matched by the
service pattern mapping algorithm, the task flow fragment
to, tp, tq is covered by the service pattern spα , the task flow
fragment tr , tu, tv is covered by the service pattern spβ , the
taskflow fragment tw, tx is covered by the service pattern spη.
The task flow fragments ts, tt and ty, tz are not successfully
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Fig. 3 Service pattern mapping

mapped by any service pattern, and the PSO needs to be
called for partial service composition.

Algorithm 1 The service pattern mapping algorithm
Input:
1: T ,S P
Output:
2: MapMark
3: descending sort to S P
4: Initialize the length of MapMark
5: Initialize MainString
6: while MainString �= 0 do
7: while S Pi mactching is not success and is not the last one do
8: calling kmp algorithm to match MainString with S Pi
9: updating S Pi
10: end while
11: updating MapMark
12: updating MainString
13: updating updating S Pi
14: end while
15: return MapMark

• T is the task process given by the customer.
• S P is the candidate service pattern set.
• MapMark is the mapping mark table used to record the

situation covered by S P in T , where MapMark[i] =
None represents no match, MapMark[i] is equal to the
ID of the service pattern No. indicates that the match-
ing is successful. The service pattern that is matched
is the service pattern corresponding to the ID number,
MapMark[i] = −1 indicates that it has been matched
but has not been matched successfully.

Proposed IDPSO algorithm

Standard particle swarm optimization algorithm

PSO algorithm is a heuristic evolutionary computing tech-
nology (Wen et al., 2013; Eberhart, 1995) derived from the
simulation of simplified social group intelligent behavior
model. At the t+1 generation, the iterative update formula
for the j-th dimension velocity and position of the i-th parti-
cle is expressed by:

vt+1
i, j = w ∗ vt

i, j + c1r1(pi, j − xt
i, j ) + c2r2(pg, j − xt

i, j ) (6)

xt+1
i, j = xt

i, + vt+1
i, j (7)

where the non-negative constants c1 and c2 are learning fac-
tors, which determine the degree of influence of pi, j and pg, j

on the new speed, and r1 and r2 are uniformly distributed ran-
dom variables within [0, 1]. The linearly decreasing inertia
weight value proposed by Eberhart and Kennedy (1995) is
widely used:

w = wmin + (wmax − wmin)(Tmax − t)/Tmax (8)

where wmax is the initial inertia weight value, wmin is the
inertiaweight value corresponding to themaximum iteration,
wmax , wmin .In the service selection of service composition,
a particle is regarded as a service composition solution. The
abstract subtask T = t1, t2, .., ti , ..., tn decomposed repre-
sents the search space of each dimension of the particle,
n represents the number of abstract subtasks decomposed,
it also indicates that the search space of the particle has n
dimensions. The number of web services in the candidate
service set cssi corresponding to each abstract subtask ti is
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Fig. 4 Particle coding in service
composition

set tomi , whichmeans themaximumvector length of the par-
ticle in this dimensional search space, i ∈ [1, n] ∧ i ∈ N+.
Each element in cssi is the unit service asi

j , which is specif-
ically coded, as shown in Fig. 4.

After the particles select the corresponding vector values
of each dimension, the selection of the web service compo-
sition solution is completed. The web service composition
solution corresponding to each particle is evaluated by the
fitness value evaluation function to find the optimal ser-
vice composition solution. Using this coding method, the
web service composition selection problem is transformed
into an n-dimensional vector solution problem, that is, the
process of finding the optimal vector (x1, x2, ..., xi ..., xn).
Task T = t1, t2, ..., ti , ..., tn is the task set of the compos-
ite service CS. The number of candidates corresponding
to each abstract service in T is m1, m2, ..., mi , ..., mn and
mi ∈ N+ ∧ i ∈ [1, n]. Then the size of the composite service
solution space is

∏n
i=1 mi , which is also the time complexity

of using the exhaustive method to find the optimal solution.
When the number of subtasks in task T and the value of the
candidate service mi corresponding to each subtask ti are
very large, the time complexity is very large, which is the
direct reason why the service composition is not suitable for
exhaustive methods. The IDPSO algorithm sets the move-
ment intervals of particles in all its dimensions as continuous
circular orbits. When the fitness function is used to evaluate
the pros and cons of particle positions, the divisor function is
used to map the specific positions of the particles to discrete
intervals.

Improved discrete particle swarm optimization
algorithm

Fitness function

As been discussed in the previous section, the overall QoS
of the service composition solution has a greater impact on
the service evaluation. According to the QoS attribute value
of a single node service in the service composition solution,

aggregate calculations are performed to obtain the overall
QoS index of the service composition solution.

Qr
cs = Aggregation(csr ) (9)

Where csr is the r th attribute of the current service compo-
sition solution, Aggregation(csr ) is the aggregation of the
r th attribute of each atomic service in the service composi-
tion solution cs. The fitness function is used as the evaluation
function of the Web service composition solution.

f i tness =
n∑

r=1

wr ∗ Qr
cs (10)

where wr represents the customer’s preference for the r th
QoS attribute of the Web service composition solution, n is
the total number of QoS attributes of the service composition
solution. Smaller the fitness value indicates better optimality.

Premature prevention mechanism

The premature particle swarm means that the entire particle
swarm algorithm has fallen into a local optimal, or the fitness
value has not been updated for a long time after finding a local
optimum. This long-time duration could not be accepted by
customers. To this end, an escape mechanism is thus built:

Candidate service set sorting It is found that in the PSO
algorithm, each particle will first randomly initialize a posi-
tion, and then move in a specific direction at various orbits.
Therefore, the particle swarm algorithm is suitable for the
problem whose optimal solution has a certain direction and
order. As shown in Fig. 5, the particle swarm algorithm is
used to find the position of minimum value for the parabolic
function y = f (x). The position of a particle is currently at
the position of x0. The particle can approach the position of
the lowest point X1 only by moving to the right. For this kind
of orderly problem, the direction of at least one particle in
the particle swarm is exactly the same as the direction of the
solution. At this time, the optimization problem is solved.
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Fig. 5 Illustration of finding the optimal solution

It is found that the manipulation of the candidate ser-
vice set by the IDPSO algorithm is ultimately reflected
in each QoS attribute of each atomic service asi

j in the
C SSi . Therefore, the C SSi are sorted according to the QoS
attribute with the largest weight. The weight correspond-
ing to the six attributes in QoS = (p, r , a, re, t, rel) is
w = (w1, w2, w3, w4, w5, w6). The first two attributes of
QoS are reverse attributes, that is, the larger the attribute
value, the worse the satisfaction, the latter four attributes are
forward attributes, larger attribute value, indicates better sat-
isfaction.

Particle position resetting When the particle swarm algo-
rithm starts, it will first randomly generate a position for each
particle, and then each particle will move on its orbit to find
the optimal position. The current trajectories of all particles
happen to miss the global optimal or better position, then the
entire particle swarm algorithm falls into the local optimal,
as shown in Fig. 6.

This particle group consists of three particles, p1, p2 and
p3. xop is the optimal position or better position in the entire
space, xop is between the orbit of particle p1 and the orbit
of particle p2, the three particles p1, p2, and p3 are moving
on their respective orbits. The orbits of the three particles
never cross xop, which means that the particle has fallen into
a local optimal, and no matter how long thereafter, the par-
ticle will not find the xop of the global optimum or a better
position. Therefore, two steps need to be taken for particles
escaping from the local optimal position. Firstly, when the
particle swarm algorithm has not changed for a long time,
its optimality value does not change, and it is deemed as
falling into the local optimum. The time is set to tpre, s.t.

Fig. 6 Illustration of premature

tpre ∈ [ 15Tmax ,
1
3Tmax ] ∧ tpre ∈ N+ .Secondly, when the

particle swarm algorithm falls into the local optimum, we
use the random reset method to reset the position of each
particle so that the trajectory of one or some particles exactly
swipes the optimal position or better position as much as
possible.

Control parameter setting The control parameters of
IDPSO are P S, Tmax , c1, c2, w, vini . P S represents the size
of the particle swarm (the number of particles), Tmax is the
maximum number of iterations, c1, c2 are non-negative con-
stants, which determines the influence of the optimal position
of the global particle and the optimal position of the cur-
rent particle history on the particle velocity, w is the inertia
weight, and vini is the initial velocity of the particle. The
parameters PS and Tmax directly affect the time complexity
and the optimality of the algorithm, because the larger the
P S × Tmax , the wider the search range of this algorithm,
the larger the value of P S × Tmax , the better the optimal-
ity. Meanwhile, it will increase the time complexity of the
algorithm. Therefore, it is necessary to choose the value of
P S × Tmax to ensure the optimality of the algorithm within
the time that the customer can tolerate. The solution space
of all the service composition solutions of the IDPSO algo-
rithm is

∏n
i=1 mi , when P S ×Tmax = ∏n

i=1 mi , the IDPSO
algorithm exhausts the entire solution space, the global opti-
mal solution can be found. When P S × Tmax is very large,
P S × Tmax cannot be equal to

∏n
i=1 mi . We generate a large

number of PS and Tmax parameters through the generation
tool, and then input these parameters into the IDPSO algo-
rithm, and finally get the experimental result data, and then
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we analyze the experimental data, and the results show that
when the value of P S × Tmax is at least 1

1000

∏n
i=1 mi , the

IDPSO algorithm can achieve good optimality, thus we set
P S × Tmax = 1

1000

∏n
i=1 mi . The IDPSO algorithm only

needs to exhaust about one thousandth of the entire solution
space. A satisfying optimality can be achieved. When the
value of P S × Tmax = 1

1000

∏n
i=1 mi is still intolerable, it

can be adjusted according to the customer’s needs.We assign
the values of P S and Tmax in a one-to-one manner. c1 and c2
are learning factors that determine the impact of the histori-
cal global optimal position and the current particle historical
optimal position on the new velocity. If the values of c1 and
c2 are larger, the historical global optimal position of the par-
ticle swarm and the current historical optimal position of the
particle will have a greater impact on the new velocity, and
vice versa. There are no standard values for c1 and c2 yet.
The suggestion is to first assign large values for c1 and c2.
Once the optimality value of the IDPSO algorithm changes
frequently, it means that the historical global optimal posi-
tion and the current particle historical optimal position are
actually very helpful for the algorithm to search for the new
optimality value. Therefore, at this time, we needMaintain or
increase the influence of the historical global optimal posi-
tion and the current particle historical optimal position on
the algorithm optimization, so we can choose not to change
or appropriately increase the values of c1 and c2. Once the
optimality value of the IDPSO algorithm has not changed
after many generations, it means that the historical global
optimal position and the current historical optimal position
of the particle are actually not very helpful or helpful for the
algorithm to search for the new optimality value. Therefore,
At this time, we need to reduce the influence of the histori-
cal global optimal position and the current particle historical
optimal position on the algorithm optimization, so we can
appropriately reduce the values of c1 and c2. The parameter
w can be set according to Eq. 8. The parameter vini is the ini-
tial velocity of the particles. Since the global optimal position
is not accessible, a random strategy is applied to set a value
for the parameter vini , the random strategy is to randomly
generate a set of integers as the value of vini .

Reference setting In the relationship between the whole
and the components, we know that the optimal components
does not mean the optimal overall, but the combination of
the optimal components is better, so the optimal components
has a certain reference value for the overall optimization.
We apply this concept to the IDPSO algorithm, task T =
t1, t2, ..., ti , ..., tn earlier, and its corresponding candidate
service set is C SS = css1, css2, ..., cssi , ..., cssn , that is,
the candidate service set corresponding to subtask ti is ccsi .
First, we adapt the unit service asi

j computing unit in the
candidate service set ccsi of each subtask ti :

f i tnessas =
n∑

r=1

wr ∗ Qr
as (11)

where wr is the weight of the r th attribute of the unit service
as, Qr

as is the r th attribute of the unit service as, and then the
unit service asM F with the smallest unit fitness value in each
candidate service set cssi is selected to form the reference
optimal service composition solution csre f , and calculate
the fitness value of the solution with formulas 9 and 10 ,
which we call the reference fitness value f i tnessre f . When
the IDPSO algorithm executes the last iteration, compare the
fitness value f i tness of the obtained global optimal parti-
cle with the reference fitness value f i tnessre f . If f i tness <

f i tnessre f , it indicates that the particle swarm algorithm has
selected the global optimal or better solution. At this time,
the solution corresponding to the global optimal particle is
used. If f i tness > f i tnessre f , it indicates that the particle
swarm algorithm is actually trapped in the local optimum. At
this time, if the customer cannot accept the long wait caused
by the particle swarm optimization continuing to optimize,
the customer should choose to refer to the optimal service
composition solution csre f as the optimal solution for the ser-
vice composition. If f i tness = f i tnessre f , it indicates the
optimality of the solution selected by the particle swarmalgo-
rithm comparing with the optimality of the reference optimal
service composition solution csre f , the particle swarm algo-
rithm may still fall into the local optimum. if the customer
cannot accept the long wait caused by the particle swarm
optimization continuing to optimize, then it does not matter
whether the optimal service composition solution selected by
the current particle swarm is used or the reference optimal
service composition solution csre f is used.

• P S is the number of particles.
• X is the positions matrix of the particles.
• Pibest is the individual historical optimal positions of the
particles.

• Pgbest is the global historical optimal positions of the
particles.

• f i tnessre f is the fitness value of the reference optimal
solution.

• f i tnessg is the fitness value of the global optimal
solution givenby the loop statement, and the IDPSOalgo-
rithm finally outputs the position of the optimal particle.

Framework of the proposed approach

The service patterns are a set of service process fragments
excavated from a large number of historical service records
by using data mining techniques. The service pattern, the
matching algorithm SP-Mapping, and the IDPSO algorithm
are integrated to carry out an overall service composition for
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Fig. 7 Proposed PK-IDPSO algorithm framework

the task flow of the demanding service. Firstly, SP-Mapping
is applied to map the process of the new tasks. Then, the
IDPSO algorithm is used for the part of the task process
T that has not been successfully mapped to perform local
dynamic and instant service composition. The proposed PK-
IDPSO algorithm framework is shown in Fig. 7. In Fig. 7,
the user submits a service composition request to the model.
The model processes the request submitted by the user into a
unified abstract task flow and pushes it to the service pattern
matching phase. In the service pattern matching phase, the
model uses the pre-mined service patterns and the proposed
SP-Mapping algorithm matches the part of the current task
flow, and submits the unmatched remaining part to the service
selection phase. In the service selection phase, the model
uses the proposed IDPSO algorithm proposed to composite
services for the remaining part of the current task flow, and

finally themodel integrates the results into a complete service
composition solution and feeds it back to the user.

Numerical experiments

Experimental settings

In this work, the QWS public data set of Zeng et al. (2003,
2004) is adopted for the atomic service part.We test the num-
ber of different subtasks separately, and assign the services
on the QWS data set to these subtasks accordingly, which are
used as the candidate service set of the subtasks. The candi-
date set of each subtask includes 100 units. Four attributes
are selected and extra two attributes are supplemented by
simulation that is to randomly generate values according to
the value range of the corresponding attribute values and
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Table 1 System resource configuration

OS CPU RAM Experimental tool

Windows 7 64-bit Intel(R) Core(TM) i5 3230 3.60GHZ 12GB eclipse+pyDev2.7+python 3.0

Table 2 Service pattern data set Service pattern attributes Number of service patterns Length of Service patterns

ID, service sequences 5154 2-20

Table 3 Atomic service data set Total QoS attributes and value range

2000 r(1 − 5000), a(1 − 100), t(1 − 10), rel(1 − 100), p(1 − 100), rep(1 − 10)

Algorithm 2 IDPSO algorithm
Input:
1: P S, Tmax , c1, c2, w, V
Output:
2: Pgbest
3: Initialize P S, c1,c2
4: Set dimensions of particles
5: Descending or ascending sort for candidate service set css by QoS

attribute of max weight value
6: Randomly initialize V , X
7: Compute fitness
8: Set Pibest ,Pgbest according to fitness
9: Set tpre = 1
10: while i terations <= Tmax do
11: if tpre=set count then
12: Randomly initialize V , X
13: else
14: Update c1, c2, w
15: Update V
16: Update X
17: end if
18: Compute fitness
19: Update Pibest ,Pgbest according to fitness
20: tpre++
21: end while
22: Compute f i tnessre f
23: if i tnessre f < f i tnessg then
24: return Pref
25: else
26: return Pgbest
27: end if

insert the values into the atomic service data set. A total of
six attributes are used as the QoS evaluation index attributes,
response time (r ), availability (a), throughput (t), Reliability
(rel), service price (p), and reputation (rep). The first four
are the original attributes in the QWS data, the last two are
the attributes inserted by simulation. The weight is set as
weight(r , a, t, rel, p, rep) = (0.2, 0.3, 0.1, 0.1, 0.2, 0.1)
to the customer preferences. In addition, we collected 10,000
simulated historical service records, and mines 5154 ser-
vice patterns from them as the data set of the service pattern
matching algorithm SP-Mapping.The system resource con-

figuration and data set characteristics of this experiment are
listed in Tables 1, 2, 3.

We set up some groups of experiments according to the
number of different sub-tasks. The number of sub-tasks in the
first group is 2, and the number of sub-tasks in other groups
is increased by 2. The number of sub-tasks in the last group
is 20, experiments of each group are performed 50 times, and
the final result was the average of 50 times. The parameter
settings of experiments of each group are listed in Table 4.
The values of c1and c2 are dynamically set by the algorithm
according to “” section 4.1. The inertia weight w is dynam-
ically changed according to Eq. 8 and the initial values are
given according to Eq. 9. The initial values of the particle
velocity V and the particle position X are generated ran-
domly. Those values will be dynamically changed according
to Eqs. 6 and 7 .

Results and discussion

The IDPSO, PK-IDPSO, ZP-PSO (Kashyap et al., 2020), S-
ABC (Liu et al., 2019), EO (Jin et al., 2022), RSA (Abualigah
et al., 2022), GA (Cergibozan & Tasan, 2022), FPA (Zhang
et al., 2019), HAA-ACO (Wang et al., 2022), HHO (Li et
al., 2021), BBO (Sangaiah et al., 2020) and HMM-ACO
(Sefati & Navimipour, 2021) algorithms are compared by
evaluating the performances in terms of Optimality, Conver-
gence and Time Complexity. Optimality reflects the quality
of the solution obtained by the algorithm. The better opti-
mality means that solution obtained by the algorithm can
meet the user’s requirements is better. Convergence reflects
the speed of algorithm optimization. The better convergence
of the algorithm means that optimization speed of the algo-
rithm is faster. Time complexity refers to the time it takes
for an algorithm to complete a service composition. So, if
the algorithm time complexity is smaller then the algorithm
is better. Obviously, the optimality and time complexity of
an algorithm are contradictory. The number of iterations and

123



Journal of Intelligent Manufacturing

Table 4 Parameters for different numbers of subtasks

TasksNum Params

P S T tpre c1 c2 w V X

2 4 4 2 100 100 0.7750 ram ram

4 50 50 10 100 100 0.8990 ram ram

6 100 100 20 100 100 0.8950 ram ram

8 250 250 50 100 100 0.8980 ram ram

10 500 500 100 100 100 0.8990 ram ram

12 700 700 140 100 100 0.8993 ram ram

14 900 900 180 100 100 0.8994 ram ram

16 1000 1000 200 100 100 0.8995 ram ram

18 1500 1500 300 100 100 0.8997 ram ram

20 2000 2000 400 100 100 0.8998 ram ram

the number of individuals for the same number of subtasks
are the same for each compared algorithm.

Optimality

The Optimality is expressed by:

Optimali t y = f i tness (12)

The smaller the Optimality value, the higher its optimality. In
order to verify the optimality of the algorithm proposed for
web service composition selection, the number of candidate
unit services selected for each subtask is set to 100, and the
ability of thefive algorithms tofind theoptimal solutionunder
different subtasks is investigated. The results are listed in
Table 5 and Fig. 8.

It can be seen fromTable 5 andFigure 8 that in the different
subtask tested, except PK-IDPSO, the service composition
solution found by the IDPSO algorithm has the smallest fit-
ness value thanks to the mechanism set up to prevent the
premature. The fitness value found by PK-IDPSO is the
best among all the algorithms. It is because that the PK-
IDPSO algorithm benifits from both the service pattern and
the IDPSO algorithm. The service pattern greatly reduces
the search space of the IDPSO algorithm, resulting in an
improved optimization capability.

Convergence

Convergence indicates the speed of algorithm optimization,
and the results are shown in Figs. 9, 10, 11, and 12 the influ-
ence of iteration times on optimality under different numbers
of subtasks.

It can be seen from Figs. 9, 10, 11, and 12 that for differ-
ent numbers of subtasks, the average optimal values found
by various algorithms show different trends as the number of

iterations increases. Regardless of the number of subtasks,
in addition to the PK-IDPSO algorithm, the IDPSO algo-
rithm has the fastest convergence speed. This is because the
premature prevention mechanism we set has a great effect
on the convergence. In addition, PK-IDPSO has the fastest
convergence rate, and its convergence rate far exceeds that
of IDPSO algorithm. This is because the PK-IDPSO algo-
rithm integrates the advantages of the service pattern on top
of the advantages of the IDPSO algorithm. The introduc-
tion of the service pattern greatly reduces the search space of
the IDPSO algorithm, resulting in a greatly improved conver-
gence speed. Therefore, the combination of these two aspects
leads to a very high convergence rate of the PK-IDPSO
algorithm, which is the highest among all the algorithms dis-
cussed in this paper.

Time complexity

Time complexity indicates the performance of the algorithm
in time. We set the candidate set corresponding to each sub-
task to 100 units. Tests are performed with different numbers
of subtasks. The results are compared in Table 6 and Fig. 13,
where the execution time unit is in seconds (s).

FromTable 6 and Fig. 13, it can be concluded that the time
performance of the IDPSO algorithm is not very good. This
is due to the addition of the escape from the local optimal
mechanism,which leads to an increase in its calculation time.
However, PK-IDPSO embodies a great time performance
advantage. This is because the PK-IDPSO algorithm intro-
duces a service pattern on the basis of the IDPSO algorithm.
The introduction of the service pattern simplifies the scale of
the problem, so its calculation time is greatly reduced. .When
the number of subtasks is small, for example, the number of
subtasks is 4. Although the execution time of the PK-IDPSO
algorithm is the smallest, it is not much different from the
execution time of most comparison algorithms. When the
number of subtasks gradually increases, the execution time
of IDPSO and the execution time of all comparison algo-
rithms are getting bigger and bigger. The execution time of
PK-IDPSO algorithm is much smaller. When the PK-IDPSO
algorithm is executed, the particle swarm algorithm IDPSO
is not called first, but the service pattern matching algorithm
SP- Mapping to match the service patterns, calling the ser-
vice pattern matching algorithm SP-Mapping will consume
a part of the time, and then call the particle swarm algorithm
IDPSO to perform instant service combination on the sub-
tasks that are unsuccessful in the service pattern matching.
When the number of subtasks is small, call The service pat-
tern matching algorithm SP-Mapping consumes a relatively
large proportion of the total time, and when the number of
subtasks is small, the execution time of all swarm intelligence
optimization algorithms is very small, so the execution time
of each algorithm is very close. When the number of sub-
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Table 5 Comparison of
optimality values of different
algorithms with different task
numbers

TasksNum IDPSO PK-IDPSO ZP-PSO S-ABC EO RSA

2 0.018623 0.015802 0.045560 0.033410 0.028431 0.046875

4 0.023804 0.018921 0.048970 0.038906 0.033876 0.051211

6 0.036513 0.022951 0.071823 0.056318 0.043113 0.071944

8 0.044916 0.028045 0.072481 0.057911 0.047873 0.073264

10 0.048867 0.030260 0.073652 0.059221 0.051238 0.072656

12 0.051596 0.032034 0.076673 0.060945 0.053893 0.080675

14 0.053529 0.033113 0.078875 0.063467 0.057847 0.083764

16 0.058463 0.036682 0.081768 0.065797 0.059321 0.085241

18 0.065115 0.042794 0.086387 0.077837 0.066234 0.089243

20 0.069979 0.043767 0.089124 0.080346 0.072826 0.091223

GA FPA HAA-ACO HHO BBO HMM-ACO

2 0.032141 0.047215 0.025332 0.035403 0.038192 0.031709

4 0.035908 0.053143 0.028477 0.039129 0.043817 0.041890

6 0.045832 0.061901 0.039453 0.045865 0.057098 0.047075

8 0.051897 0.074091 0.046785 0.059802 0.061023 0.055907

10 0.053132 0.075983 0.050274 0.061971 0.065911 0.061703

12 0.057456 0.081280 0.052011 0.062998 0.071905 0.064763

14 0.059241 0.083987 0.054323 0.064890 0.075907 0.067170

16 0.061836 0.087012 0.059112 0.067131 0.078809 0.069971

18 0.065664 0.089193 0.065901 0.075924 0.081287 0.071378

20 0.075980 0.092124 0.073017 0.081932 0.085230 0.074915

Bold values indicate the smallest fitness value of different algorithms with different task numbers

Fig. 8 Comparison of optimality values of different algorithms under different task numbers
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Fig. 9 The influence of the number of iterations on optimality under 2 subtasks

Fig. 10 The influence of the number of iterations on optimality under 8 subtasks

tasks gradually increases, the execution time of each group
intelligent optimization algorithm becomes larger and larger.
At this time, the time consumed by the PK-IDPSO algorithm
to call the SP-Mapping algorithm accounts for a small pro-
portion of the total time, or even negligible. After the service
patternmatching is performed, the number of remaining sub-
tasks that call the IDPSO algorithm becomes much less, so

the execution time of the IDPSO algorithm will be reduced a
lot, and the execution time of the PK-IDPSO algorithm will
become much smaller, as shown in Fig. 14, this advantage
can be clearly shown. In Fig. 14, the time complexity of the
PK-IDPSOalgorithmdecreases as the coverage of the service
patterns increases, and the construction of the service pattern
can greatly reduce the time complexity of the algorithm.
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Fig. 11 The influence of the number of iterations on optimality under 14 subtasks

Fig. 12 The influence of the number of iterations on optimality under 20 subtasks

It can be concluded that the PK-IDPSO algorithm can
improve theoptimizationperformance regarding theoptimal-
ity, convergence and time complexity. However, the IDPSO
adds the mechanism of avoiding to trap in local optima
considered from many aspects, the time complexity is also
increased while the optimization performance is improved.

In addition, the IDPSO is specially improved for the QoS-SC
problem, and may not have such a good optimization abil-
ity for other problems. In addition, the PKIDPSO algorithm
relies on successfully matched service patterns to have better
performance, otherwise its performance may not be guaran-
teed.
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Table 6 Comparison of time
complexity of different
algorithms under different
numbers of subtasks

TasksNum IDPSO PK-IDPSO ZP-PSO S-ABC EO RSA

2 0.0309 0.0014 0.0356 0.0302 0.0324 0.0301

4 0.1877 0.1062 0.1865 0.1806 0.1803 0.1673

6 1.0141 0.6309 1.0031 0.9987 1.0873 0.9152

8 8.7725 4.7119 8.6554 8.2336 8.5641 8.0231

10 35.4751 21.2986 33.5643 30.6574 34.8752 29.63124

12 85.2681 51.3869 80.2145 79.3367 83.6251 77.6733

14 175.3201 90.0506 160.3576 155.9017 171.3834 150.3217

16 246.0475 134.8976 233.9001 220.9077 247.9567 213.7613

18 567.1813 289.3534 540.2231 508.7039 553.9541 473.6253

20 1408.9678 783.9279 1189.7903 1120.9087 1383.6095 1047.5762

GA FPA HAA-ACO HHO BBO HMM-ACO

2 0.0357 0.0312 0.0359 0.0300 0.0331 0.0322

4 0.1723 0.1801 0.1875 0.1713 0.1807 0.1890

6 1.0143 0.9857 1.0895 0.9346 1.0797 1.0347

8 8.6324 8.1987 8.6172 8.1902 8.6135 8.9734

10 34.5734 30.1287 35.0135 29.8012 34.0281 36.7783

12 83.7531 78.8907 82.9704 77.9017 81.2103 88.6729

14 165.3231 153.9910 168.7026 152.0838 162.5062 180.4529

16 241.9763 218.9081 243.7750 217.5210 230.1192 251.5436

18 550.2149 493.2375 548.9015 481.7903 543.2019 570.8039

20 1127.8721 1117.8019 1301.2047 1103.9132 1192.3671 1479.8019

Bold values indicate the best time performance value of different algorithms with different task numbers.

Fig. 13 Comparison of time complexity of different algorithms under different numbers of subtasks
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Fig. 14 The relationship between PK-IDPSO time complexity and service pattern coverage under different numbers of subtasks

Conclusion

In this work, the construction of service patterns based on
prior knowledge is studied and the application of improved
discrete particle swarm optimization in QoS-SC optimiza-
tion problems is investigated. The SP-Mapping, IDPSO, and
PK-IDPSO algorithms are proposed, which effectively solve
the traditional swarm intelligence problems of trapping in
local optima in the field of service composition optimiza-
tion.This paper firstly constructs service patterns based on
domain knowledge. Then the particle swarm algorithm is
improved, we propose four methods to prevent particle pre-
maturity, including sorting the candidate service set, resetting
the particle position after a certain algebra, setting the con-
trol parameters of the particle swarm algorithm reasonably,
and setting the optimality of reference, which enhances the
global optimization ability of the particle swarmoptimization
algorithm, and effectively solves the problem that a particle
population easily traps in local optima. When a service com-
position request is received, the method in this paper firstly
calls the SP-Mapping algorithm to match service patterns
to obtain a partial solution, and then calls the IDPSO algo-
rithm for some requests that are notmatched successfully, and
finally obtains a complete solution. The experimental results
show that the prior knowledge-based service composition
algorithmPK-IDPSOproposed outperforms the state-of-the-
art methods tested.

Compared with other swarm intelligence service compo-
sition algorithms, the method proposed in this paper has two
strenghts: (1) the use of domain prior knowledge to guide

service composition attempts to reduce the search space of
swarm intelligence algorithms, so it can greatly improve the
search efficiency of swarm intelligence algorithms, and ser-
vice patterns mining using domain prior knowledge has been
proved to be excellent by a large number of users, so it
can well meet the needs of users. (2) the IDPSO algorithm
proposed in this paper is improved according to the charac-
teristics of the QoS-SC problem, so it has better performance
for the QoS-SC problem.

However, the method proposed in this paper has the fol-
lowing limitations: First, the control parameters of the IDPSO
algorithm are not dynamically set. Second, the method of
service pattern mining is relatively simple, and the mining
of service patterns requires historical service records in a
specific format, which leads to its limited practical applica-
tion temporarily. In view of the above limitations, further
efforts would be made in future work: (1) use the deep learn-
ing algorithm to realize the automatic setting of the control
parameters of the IDPSO algorithm. (2) the natural language
technology could be used to process complex service history
records of different formats, and the knowledge graph tech-
nology could be used to mine more complex and obscure
service patterns on this basis.
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