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Abstract

In recent years, hashing methods have received extensive attention in multimedia search due to their high computational
and storage efficiency. However, most of them explore the common representation of multi-modality data and then use it to
generate the hash codes but ignore the specific properties of each modality. To mitigate this problem, we propose a novel
hashing method, called Robust Supervised Matrix Factorization Hashing (RSMFH), which keeps both the shared and the
specific properties of multimodality data by decomposing each modality into a common representation and an inconsistent
representation. Moreover, we impose sparse constraints on the inconsistent part of each modality and minimize the
production of the consistent parts, simultaneously. In addition, the supervised label information among the data is
embedded into the learned hash codes enhancing the discriminative ability of RSMFH. We employ an efficient discrete
optimization strategy to solve the proposed model. Massive experiments on four benchmark databases show that our
approach achieves promising results in cross-modal retrieval tasks.

Keywords Hashing - Cross-modal retrieval - Matrix factorization - Supervised - Label information - Representation -
Sparse - Iterative

1 Introduction

In the past few years, the focus of retrieval technology is
transferred from single-modal to cross-modal owing to the
massive growth of multimedia data. Actually, the multi-
modal data are often not independent, but have essential
connections. Therefore, it has become a hot topic to learn
the correlation information between multimodality, which
is referred to as the heterogeneity gap. Recently,
researchers have made many efforts to bridge the
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heterogeneity gap between multimodality and achieved
promising results in many real applications [1-6].

Hashing retrieval has been extensively investigated
owing to its powerful performance in large-scale search
tasks [7-9]. It aims to project original samples into com-
pact binary codes, which preserves their similarity in the
Hamming space. Therefore, it is an effective way to rep-
resent and search for massive data using binary codes due
to its high storage and computational efficiency. As a
popular data-independent method, Local Sensitive Hashing
(LSH) [10] adopts the random projection as the hash
function. Spectral hashing (SH) [11] is a well-known data-
dependent method and learns the hash codes by thresh-
olding the Laplace Beltrami eigenfunction of the manifold.
Sparse hashing [12] adopts a non-negative sparse coding
method to transform the original sample into a low-di-
mensional representation, and then it is embedded into a
binary code.

In cross-modal retrieval applications, the hashing tech-
nology can be divided into supervised and unsupervised
learning methods. Unsupervised methods explore correla-
tions from heterogeneous data by using binary codes. They
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include graph-based methods and matrix factorization-
based methods. The former maintains the correlations of
hash codes by constructing similar graphs, but it needs to
take expensive computational costs [12—14]. The latter
seeks the latent semantic correlations of multi-modalities
[15-19]. Therefore, they can avoid the construction of a
large-scale affinity matrix and thus greatly reduce the
computational complexity. To improve the search perfor-
mance by considering the label information, some super-
vised hashing methods based on cross-modal retrieval have
been proposed in the past few years. Although the super-
vised hashing models have improved considerably over the
unsupervised hashing models, it can be found that the
supervised hashing models still exist the following chal-
lenges. Firstly, the hash codes are learned from the latent
common representation and the specific properties of each
modality are neglected during matrix decomposition.
Therefore, it leads to achieving unsatisfactory retrieval
performance. Secondly, to improve the retrieval perfor-
mance of hashing algorithm, the supervised label infor-
mation of multimodality data should be embedded in the
hash codes in real applications. Thirdly, most of them

optimization procedure. The relaxation strategy is used to
obtain a continuous solution, and then quantify the con-
tinuous solution to generate a hash code. However, this
strategy leads to large quantization errors and thus reduces
the performance in real applications.

In this work, a novel cross-modal retrieval method,
called Robust Supervised Matrix Factorization Hashing
(RSMFH), is proposed to address the aforementioned
challenges. It maintains both the shared and the specific
attributes of multi-modalities by decomposing each
modality into a consistent representation and an inconsis-
tent representation. Specifically, the inconsistency may be
caused by the noise and diversity of different modes in the
training data points. To reduce the impact of this incon-
sistency on cross-modal retrieval, we impose sparse con-
straints on the inconsistency of each modality. Therefore,
the robustness of our proposed model can be improved. In
addition, the proposed RSMFH method learns hash codes
from the shared latent semantic representations and con-
siders the supervised label information, simultaneously.
We develop an effective discrete scheme to optimize the
proposed model. Figure 1 shows the framework of our

ignore the discreteness of the hash codes in the RSMFH method in cross-modal retrieval. The
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Fig. 1 The framework of our RSMFH approach
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experimental results show that our RSMFH approach can
achieve superior retrieval performance.

The contributions of this work can be highlighted as
follows:

(1) We present a unified matrix factorization framework
for learning hash codes. It decomposes each modal-
ity into a consistent representation and an inconsis-
tent representation. Then hash codes are generated
from the consistent representation of the multimodal
data. In addition, we impose the sparse constraints on
the inconsistent parts and minimize their inner
product, simultaneously. Therefore, the proposed
RSMFH approach further considers the specific
attributes of different modalities compared with
traditional methods.

(2) To consider the supervised label information, our
approach improves the accuracy by embedding the
supervised information into the hash codes. There-
fore, more discriminative hash codes are generated
from our proposed model.

(3) We present a discrete optimization scheme to solve
our proposed model and then give its complexity
analysis. Comprehensive experimental results on
four benchmark datasets have shown the superiority
of our RSMFH method.

The remainder of the paper is organized as follows:
Sect. 2 introduces previous work of cross-modal retrieval.
Section 3 details our approach. Section 4 gives the exper-
imental result and the analysis. Section 5 draws a conclu-
sion of this work.

2 Related work

This section provides a preliminary introduction to the
related work of cross-modal hashing.

2.1 Cross-modal unsupervised hashing

In the real world, most of the multimodal data are unla-
beled and it would take a lot of labor and time to label.
Therefore, unsupervised hashing approaches have attracted
extensive attention in cross-modal retrieval. Linear cross-
modal hashing (LCMH) [7] is a typical graph-based
method and utilizes the anchor graph to preserve the sim-
ilarity of both intra-model and inter-model in the Hamming
space. However, its disadvantage is that it needs expensive
time cost to construct the similarity graph. Matrix factor-
ization-based cross-modal retrieval methods aim to seek
the latent correlations semantic hidden in multimodal data.
Ding et al [17] proposed to learn unified hash codes gen-
erated from the common representation, which is obtained

by using the collect matrix factorization (CMF). Latent
semantic sparse hashing (LSSH) [20] was proposed to learn
hash codes by integrating matrix factorization and sparse
coding. Semantic topic multimodal hashing (STMH) [18]
adopts the robust matrix factorization to generate hash
codes. Wang et al [21] proposed to learn hash codes using
discrete matrix factorization. These methods, such as
CMFH, STMH and RFDH, learn the hash codes by finding
the common representation of multimodality. LSSH learns
separate hash codes that tend to keep the particular space of
every modality. Joint and individual matrix factorization
hashing (JIMFH) [19] and discrete robust matrix factor-
ization hashing (DRMFH) [22] explore both the shared and
the modal-specific properties of multimodal data. The
difference is that the former decomposes the multimodal
data twice and neglects the discreteness of the hash codes.
The latter not only decomposes the multimodal data only
once, but also obtains the discrete hash codes. However,
the aforementioned methods are completely unsupervised
learning hashing retrieval ones, and cannot use the super-
vised information to further improve the retrieval
performances.

2.2 Cross-modal supervised hashing

Different from the above-mentioned methods, supervised
hashing methods attempt to obtain more semantic rele-
vance from supervised label information to improve
retrieval accuracy. As a typical supervised hashing
method,  cross-modal  similarity-sensitive  hashing
(CMSSH) [23] was proposed to use a binary classifica-
tion approach to learn hash codes. Kumar et al [24]
extend spectral hashing to multiple modalities and aim to
maintain both intra-modal and inter-modal correlations.
Semantic correlation maximization (SCM) [25] maxi-
mizes the correlations between different modalities to
generate the hash function. Semantic preserving hashing
algorithm (SePH) [26] learns hash codes by minimizing
the Kullback-Leibler (KL) divergence of a probability
distribution. Wang et al [27] proposed to consider both
the local geometric structure of each modality and the
label information across different modalities. Generalized
semantic preservation hashing (GSePH) [28] learns hash
codes by capturing the semantic similarity of different
modalities. Label consistent matrix factorization hashing
(LCMFH) [29] imposes the label information to con-
strain matrix decomposition. Label category supervised
matrix factorization hashing (LCSMFH) [30] not only
maintains both the inter-modal and the intra-modal
similarities of original samples, but also utilizes label
information to enhance the discriminative ability. Label
consistent flexible matrix factorization hashing (LFMH)
[31] can jointly learn modality-specific latent semantic
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spaces with similar semantics through flexible matrix
factorization. Three supervised methods, LCMFH, LFMH
and LCSMFH learn a unified representation that tends to
preserve the shared properties of multimodal data.
However, they neglect the specific properties of multi-
modality data in hash code learning. In this paper, a new
supervised multimodal hashing method, named robust
supervised matrix factorization hashing (RSMFH), is
proposed to preserve the shared properties and specific
properties of multimodal data. In addition, compared
with the aforementioned three methods, our proposed
method directly learns hash codes and optimizes our
proposed model with an efficient discrete optimization
scheme. Thereby, it can keep the discreteness of the hash
codes and effectively reduces the quantization loss.

3 Robust supervised matrix factorization
hashing (RSMFH)

This section introduces the proposed model (RSMFH) in
detail. Figure 1 plots the framework of the proposed
RSMFH approach. Specifically, it is divided into two
steps: training and retrieval. In the training step, each
modality is decomposed into a shared latent semantic
representation and an inconsistent specific representation.
Then the proposed RSMFH approach directly learns hash
codes from both the shared latent semantic representation
and the supervised label information, and gets the map-
ping matrix of each modality. In the second step, we use
the mapping matrix learned in the training step to project
the query sample to generate a hash code, and then the
retrieval task is performed based on this hash code.

4 Notations

In this paper, we take image modality and text modality as
an example. Given a set of multimodal data is O = {o;};_,,
where o; = (x;, yj) is a multimodal data point, and x; and y;
are the feature vectors of the i— th instance of two
modalities, respectively. X = {x1,x2,...,%,} € R4 and
Y ={y,92,.--,Y,} € R are the feature matrices of two
modalities, where n denotes the number of samples, d, and
dy are the dimensionality of image samples and text sam-
ples, respectively, and dy # d,. In general, we set the
centers of samples to zero, i.e., Y . x; =0, Y oy, =O0.
Besides, we use L = {l,h,...,I,} € R™" to represent
the label matrix, where c is the number of categories. If the
i-th sample belongs to class j, thenl;; = 1; otherwise,/;; = 0.
Assuming that the length and the matrix of hash code are k
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andB = {b,b,,...,b,} € R®", respectively. ||-| is the
Frobenius norm and sgn(-) denotes the sign function.

4.1 The proposed method

(a) Matrix factorization

Several studies have demonstrated that matrix factorization
approaches can effectively explore the common represen-
tation of multimodality. Ding et al [17] firstly applied CMF
method for cross-modal retrieval. It learns the hash codes
from the shared properties of multimodal data. However,
the specific properties of each modality are ignored. To
solve this issue, the proposed method decomposes each
multimodality into a consistent representation and an
inconsistent representation. Given the feature matrices X
and Y of two modalities, they can be decomposed into the

product of U; = [Ltn,ulz, .. _7u1r]dx><r and V = [Vl,

va,.. iy, and  the product of U = [uy,

dyxr

Uz, ...y ] and V = [v,va,...,u,]"", respectively.
Therefore, the model of CMF is given as follows:

{XzUl(V+E1) (1)
Y= Uy(V+E)’

where U; and U, denote the basis matrices of the two

modalities, respectively. V stands for the unified repre-
sentation matrix. E; € R“" and E, € R®" are the incon-
sistent parts of the two modalities, respectively.

Using the Euclidean distance as the metric, Eq. (1) can
be rewritten as the following minimization problem:

Fi=)X—-U((V+E):+1=)Y -Uy(V+E): (2)
An ideal hypothesis is that the inconsistent parts of

multi-modalities should have a gap as large as possible. To
achieve this goal, the inner product of both E; and E; is
minimized and then added into Eq. (2). Thus, we can
further rewrite Eq. (2) as follows:

Fi =X — U (V+E)p+(1 = )Y
— Up(V + Ex)7+oTr(E(EY), (3)

where Tr(.) denotes the matrix trace, and « stands for the
nonnegative parameter.

(b) Sparse constraint

Many studies on sparse representation theory have been
shown that [, ;-norm constraint is effective in reducing the
effect of noise and outliers [32-34]. The inconsistency of
each modality can be considered as a special kind of noise,
and thus we impose the [, -norm-based sparse constraint
on both E; and E,. Therefore, the loss function F is given
as follows:
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Fy=Ep1+En; (4)

(c) Hash codes scheme

Here, we consider learning the hash codes from the com-
mon representation of the multimodality. By introducing an
auxiliary matrix, the latent unified representation of dif-
ferent modalities is mapped to hash codes. Therefore, the
loss function F3 is expressed as follows:

F3y=B—RV2s.t.RR" =1,B e {—1,1}"". (5)

where R € R¥** is an projection matrix.

To generate more discriminative hash codes, the label
information of the data is fully considered. Specifically, the
learned hash codes B in Hamming space can be recon-
structed using a certain basis set. Therefore, the relation-
ship of both the label information L and the hash codes B
can be represented as follows:

Fy=pB—PL2 st Be{—1,1}*" (6)

where P € R¥*¢ denotes a basis matrix, and f denotes a
nonnegative parameter.

(d) Overall objective function.

Kernel trick aims to map the original samples into a high-
dimensional feature space, and is suitable for dealing with
the linear non-separable problem [35, 36]. In particular,
¢(X) = [¢(x1)7¢(x2)7"'7¢(xn)]’ ¢(Y) =
[d(y1), d(2), ..., d(yn)] are the kernel feature matrices of
two modalities, respectively. Here, ¢(-) denotes the RBF
kernel function. Therefore, the kernel features ¢(x;) and
¢(y;) are given as

02 (12
Xi o Xi O
(f)(xi) = |ﬁxp <— 20_—21> , ..+, €XP <— T)] y
) )
22 22
Vi al Vi am
¢(yl) = [GXP <_ 42) y -+ CXP <_ 42>‘| )
20(2) 20'(2>

where {oc](t)}_ ](t = 1,2) denotes m anchor points. o) =
.

o i Dot Xi — O‘/('I) and o) =370, Do vi— %(2)
denotes the kernel widths of two motilities, respectively.
For convenience, we replace ¢(X) and ¢(Y) by using X
and Y, respectively. Thus, we get

X =¢(X), Y =(Y). (3)

By integrating Egs. (3), (4), (5) and (6), the overall
objective function of the proposed RSMFH approach is
given as follows:

min FU,,U,,E,E,,P,R,V B
Ur,Us.EyEa,PRV.B 1, U2, L1, L2, 17,1\, V,

= Fi+F,+F+F,

= IX— U (V+E)2+(1 — )Y — Up(V + Ey)> 9)
+ oTr(E\E}) + uB — RV; + BB — PL}.
+YE12,1 + YExn1 + yR(U;, Uy, P, V)

s.t.RRT = I,B e {—1,1}}".

where R(.) =% aims to avoid overfitting, and y is the
regularization parameter.

4.2 Algorithm optimization

Obviously, Eq. (9) is nonconvex and it is impossible to get
its global optimization solution. We can update one vari-
able while fixing other variables in this paper. Therefore,
Eq. (9) is solved by the following steps:

Step-1: update U; by fixing U,,E,E;,P,R,V,B.
Equation (9) with respect to U; can be simplified as
follows:

min JX — U, (V + E))-+yR(U}). (10)

U
By setting the partial derivative w.r.t. U to zero, we can

derive the closed solution of U; as follows:

T T,V
Ur =X(V +E) ((V+ E)(V + Ey) + ) an

Step-2: Update U, by fixing U,,E,,E>,P,R,V,B.
Equation (9) becomes the following form:
min(1 — 2)Y = Us(V + E2)p+9R(U>) (12)

Similarly, we can get the closed solution of U, as
follows:

) -1
Up = Y(V + EZ)T((V +E)(V + Ez)T—&-ﬁI) .

(13)

Step-3: Update E; by fixing Uy, U,,E,,P,R,V,B.
Equation (9) can be simplified as follows:

min /X — Ui(V + E)j+yEi, + oTr(EES). (14)
1

To solve the /5 ;-norm-based optimization problem, we
first introduce the following weighting matrix:

1

1

D=5
12

(15)

where DS) is the i-th diagonal element of D and E is the
i-th row of matrix E;. Then, Eq. (14) can be restated as
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min 2X — Uy(V + E\);+yTr(EID(E)) + oTr(E EY).
1
(16)

By calculating the partial derivative of Eq. (16) for E; to
zero, the closed solution of E; is derived as follows:

A -1 o
Elz(UlTUH—IfDl) (U{(X—Ulv)—zEz). (17)

Step-4: Update E, by fixing Uy, U,,E{,P,R,V,B. We
rewrite Eq. (9) as follows:
min(1 — )Y — Up(V + Ex)p+yEn, +oTr(E\EY).  (18)
2

Similarly, we first introduce another weighting matrix as
follows:

@ _ 1
DY = —, (19)
2E,

where D,(l2 ) denotes the i— th diagonal element of D, and E},
stands for the i— th row of matrix E. Then Eq. (18) can be
re-expressed as follows:

min(1 — )Y — Us(V + E))3+9Tr(ELD1Ey)
2
+oTr(E\E}). (20)
By setting the derivative of Eq. (20) w.r.t. E; to zero, the
closed solution of E, is given as

-1
E, = (U2TU2 +1—yiD2) (UZT(Y — V) - %El)
(1)
Step-5: Update P b y fixing U,,U,,E|,E»,R,V,B.
Equation (9) can be simplified as:

min fB — PL; +yR(P). (22)
We take the partial derivative of Eq. (22) with respect to

P and set it to zero. Therefore, the closed solution of P is
derived as follows:

P = (BBLT) (BLLT + 1) " (23)

Step-6: Updating V b y fixing U,, U;,E;,E», R, P,B.
Equation (9) can be simplified as:
m‘;n/lX—Ul(V—FEl)fv-l-(l — )Y = Us(V + Ea); (24)
24
+ uB — RVE: + 9R(V)

@ Springer

By adopting a similar solution scheme, the closed
solution of V is given as follows:
V=(UTU, + (1 = )ULU, + R'R + 1)
x (AU{ (X = U1Ey) + (1 — A)U; (Y — U,E2) + R"B).
(25)
Step-7: Update B b y fixing U,,U;,E(,E>,R,P,V.
Equation (9) can be simplified as
min B — RV; + B — PL}
g (26)
st.Be {—1,1}""
Equation (26) can be written equivalently as follows:
: TR\ _ T T pT
min u(Tr(B'B) — 2Tr(B'RV) + Tr(V'R'RV))
+ B(Tr(B"B) — 2Tr(B"PL) + Tr(L" PTPL)) (27)
st.B e {—1,1}"".

By removing the irrelevant parts with the variable B,
Eq. (27) can be written as follows:

arg min uTr(B"B) — 2uTr(B"RV)) + BTr(B"B)
? (28)
—2BTr(B"PL) s.t. B € {—1,1}""".

Since Tr(BTB) is a constant, the closed solution of B is
given as follows:
B = sgn(uRV + BPL). (29)
Step-8: Update R by fixing U,, U,,E|,E,,B,P,V. We
can simplify Eq. (9) as
min uB — RVZ:s.t. RRT =1 (30)

It is clear to see that Eq. (30) is a classic orthogonal
Procrustes problem and thus can be optimized through

solving SVD. We have BV = WQW' and the solution can
be obtained as follows:

R=WW'. (31)

In summary, Algorithm 1 describes the solution steps of
our RSMFH approach in detail.
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Algorithm 1 RSMFH

Training stage

Input: Hash code length £, label matrix L, feature matrices X and Y of two
modalities, and parameters A, a, 3, v, .

Output: hash codes B, mapping matrices W; and W, .

Procedure:

1. Calculate ¢p(X) and ¢p(Y).

2. Initialize V, E;, E,, B, D;, D,, P and R.

Repeat

(1) Update U, by Eq. (11).

(2) Update U, by Eq. (13).

(3) Update D; by Eq. (15).

(4) Update E; by Eq. (17).

(5) Update D, by Eq. (19).

(6) Update E, by Eq. (21).

(7) Update P by Eq. (23).

(8) Update V' by Eq. (25).

(9) Update B by Eq. (29).

(10) Update R by Eq. (31).

Until reaching the maximum iteration or convergence.

4. Learn mapping matrices W, and W, by Eq. (34) and Eq. (35), respectively.
Retrieval Stage

Input: The feature matrix Xgye, and Yge, of the retrieved data, mapping
matrices W, and W, .

Output: B, and B,,.

Procedure:

1. Calculate d)(X quey) and qb(Yquey).

2. For X gy ey calculate hash code by B, = sgn(Wquuey).

For Ygy¢y: calculate hash code by B, = sgn(W,Ygyey)-
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4.3 Hash function

As mentioned previously, our RSMFH approach includes
hash function learning and hash coding learning separately.
Specifically, we use Algorithm 1 to get the optimal hash
codes B, and then learn modality-specific hash functions to
deal with the out-of-sample problem. Generally, the hash
functions are learned by minimizing the following least-
squares regression problems:

min B — W\ X7 + yR(W)), (32)
1
min B — WaY7 + yR(Ws). (33)

By setting the partial derivatives of Eqgs. (34) and (35)
w.r.t. Wi and W, to zero, respectively, the closed solutions
of W, and W, are given as follows:

Wy = (BXT) (xx" +91) ", (34)
Wy = (BYT) (YY" + 1) (35)

Given a query data Xguey Or Yguey, their hash codes are
obtained according to the following formula:

B, = Sgn(WIXquey)7 (36)
B, = sgn(W>rYquey). (37)

4.4 Complexity analysis

In this subsection, we present the complexity analysis of
our RSMFH approach. As we know from Sect. 3.3, the
overall complexity of the proposed optimization
scheme consists of updating U,,U,,E,,E>,P,R,V B.
Specifically, the computational complexity of updating
Uy, Up,E1,Ey is O(((mk + k*)n + k> + mk®)t). We need
O((ken + c®n + ¢ 4 kc?)t) and O((k*n + k3)t) to update P
and R, respectively. The cost of updating V and B is
O((2k*m + 2k* + 2k>n + 4kmn)t) and  O((k*n + ken)t),
respectively. Here, ¢ is the number of categories and m is
the number of anchor points. k is the length of the hash
code. ¢ is the number of update iterations, and c, m, k < n.
Therefore, the overall complexity of our RSMFH method is
linear with n (the size of the training dataset).

5 Experiments
5.1 Datasets
LabelMe [37]: The dataset consists of 2688 outside scenes

from eight categories. We use a 245-dimensional phrase
frequency and a 512-dimensional GIST feature to describe
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each sample of text and image modalities, respectively. In
our experiments, 2016 image-text pairs are randomly
selected as the training dataset, and the rest 672 image-text
pairs are as the testing dataset.

UCI Handwritten Digit (UCI) [38]: The dataset includes
handwritten numerals (0-9). Each sample of image
modality and text modality is described by a 76-dimen-
sional vector and a 64-dimensional vector, respectively. In
the experiments, we randomly sampled 1500 image-text
pairs for training and the remaining 500 image-text pairs
were used as a testing dataset.

Pascal sentences [39]: This dataset consists of 1000
image-text pairs divided with 20 categories from VOC
2008. We utilize 5 separate sentences to describe each
image. For a fair comparison, we randomly selected 800
image-text pairs as the training dataset (40 pairs per class),
and 100 image-text pairs as the testing dataset (5 pairs per
class).

Wiki [40]: Tt contains 2866 image-text pairs collected
from Wikipedia. The AlexNet and the Latent Dirichlet
Allocation (LDA) model are used to extract the features of
all image and the text, respectively. Then each image and
each text can be represented by a 128-dimensional vector
and a 10-dimensional topic vector, respectively. The
training and testing datasets contain 2173 samples and 693
samples, respectively. Table 1 shows the statistics of the
four data sets.

5.2 Baselines and implementation details

To evaluate the effectiveness of RSMFH, we select several
state-of-the-art cross-modal hashing methods as the com-
parison algorithms.

e (CCA [41]: This method learns hash codes by finding the
linear relationship of multimodal data.

e SCM_orth and SCM_seq [25]: The goal of SCM is to
make the distance of hash codes equal to the similarity
of label vectors. SCM_orth uses orthogonal projection
to learn hash codes. SCM_seq represents a sequential
learning method for generating hash codes.

Table 1 Statistics of the four data sets

Statistics LabelMe UCI  Pascal sentences Wiki
Total size 2688 2000 1000 2866
Training dataset size 2016 1500 800 2173
Query dataset size 672 500 100 693
Category 8 10 20 10
Image feature 512-D 76-D  4096-D 128-D
Text feature 245-D 64-D  300-D 10-D
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e CMFH [17]: It learns the unified hash codes by
collective matrix factorization.

e STMH [18]: This method learns the modal-specific hash
codes by matrix factorization and topic model for image
and text, respectively.

e JIMFH [19]: It embeds the shared and specific
attributes of multimodal data into the learned hash
codes, thus improving the retrieval performance.

e DRMFH [22]: This method formulates the consistency
and inconsistency across different modalities into a
matrix factorization model, improving the retrieval
performance.

e OCMFH [42]: It learns discriminative hash codes for
streaming data by CMF in an online optimization
scheme.

e DCH [43]: It directly learns discriminative binary codes
while retaining the discrete constraints using label
information to guide hash code learning.

e SMFH [27]: It considers the local geometric structure of
each modal and the label information among multi-
modality data.

e LCMFH [29]: It imposes the label information to
constrain matrix decomposition.

e LCSMFH [30]: This method not only maintains both the
inter-modal and the intra-modal similarities of original
samples, but also utilizes label information to enhance
the discriminative ability.

e [LFMH [31]: It can jointly learn modality-specific latent
semantic spaces with similar semantics through flexible
matrix factorization.

Among them, CCA, CMFH, STMH, DRMFH, OCMFH
and JIMFH are unsupervised learning methods, and
SCM_seq, SCM_orth, DCH, SMFH, LCMFH, LCSMFH,
LFMH and our proposed RSMFH fully consider the
supervised information. In this experiment, the codes of
DRMFH and LCSMFH are reproduced by ourselves, and
the source codes of the rest are publicly available. To
comprehensively validate the effectiveness of our proposed
model, we perform two common tasks: (1) Txt2Img: search
for the images using text; (2) Img2Txt: search for the text
using images.

5.3 Evaluation metrics

The first well-known evaluation metric is the mean of
Average Precision (mAP). Given a query and the retrieved
results, the definition of average precision (AP) is given as
follows:

AP == "P(r)d(r), (38)

where N denotes the number of relevant instances in the
query set, and P(r) is the precision of the top r-th retrieval
instance. 6(r) = 1 if the r-th retrieval instance is a neighbor
of the query, otherwise, d(r) = 0. In our experiments, R is
empirically set to 50, and thus it is noted as mAP@50. Due
to the randomness of the initialization of the variables, we
run the algorithms five times and reported their average
values as the final results.

Another well-known metric is the Precision-Recall (PR)
curve, whose goal is to show the tradeoff between recall
and precision. In general, the greater the Precision-Recall
curve, the higher the retrieval performance. Its detailed
description can be referred to in [44].

5.4 Experimental results

Four lengths of binary codes are used in the experiments to
verify the retrieval performances. Specifically, the lengths
of hash codes are empirically set with difference values,
such as 16 bits, 32 bits, 64 bits and 128 bits. The results of
all approaches on four multi-modal datasets are presented
in this subsection.

5.4.1 Results on LabelMe database

The first experiment was carried out on the LabelMe
database. The mAP values of both RSMFH and other
competitors on the LabelMe dataset are reported in
Table 2, and their PR curves are shown in Fig. 2. In this
experiment, we empirically varied the length of hash codes
from 16 to 128 bits. From Table 2, it can be seen that our
proposed RSMFH performs better than other competitors
in both Txt2Img and Img2Txt tasks on the LabelMe
dataset. Compared with the best performances among
competitors, our RSMFH approach is improved by 4.31%,
2.98%, 2.98%, 2.46% in the Img2Txt task, respectively,
and 3.29%, 1.89%, 1.17%, and 1% in the Txt2Img task,
respectively. In addition, it is worth noting that the per-
formance of DRMFH is higher than that of JIMFH. This is
because the discrete optimization of the DRMFH model
plays an important role during the optimization process.
Moreover, we can find that our proposed RSMFH method
outperforms the DRMFH method, which fully demon-
strates the effectiveness of embedding the label informa-
tion into hash codes. In addition, it can be seen from Fig. 2
that our RSMFH method outperforms other state-of-the-art
approaches on different tasks with different hash code
lengths. Therefore, it also verifies the effectiveness of our
RSMFH approach from another aspect. In our paper, the
bold in the tables indicate the best performances.
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Table 2 mAP@50 Results on

LabelMe Methods Txt2Img Img2Txt
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
CCA 0.5127 0.4612 0.3994 0.3743 0.6289 0.5741 0.5553 0.5540
SCM_seq 0.6773 0.7382 0.7421 0.7494 0.8587 0.8760 0.8756 0.8774
SCM_orth 0.4740 0.3628 0.2873 0.2364 0.6443 0.4900 0.3962 0.2364
CMFH 0.6081 0.6262 0.6568 0.6880 0.7524 0.7773 0.7963 0.8028
STMH 0.6236 0.7050 0.7331 0.7485 0.7670 0.8109 0.8225 0.8237
JIMFH 0.6243 0.6762 0.6944 0.7096 0.7688 0.8164 0.8273 0.8320
DRMFH 0.7681 0.7888 0.7937 0.7951 0.8449 0.8711 0.8827 0.8778
OCMFH 0.6181 0.6362 0.6868 0.6910 0.7511 0.7806 0.8055 0.8128
DCH 0.6845 0.7512 0.7515 0.7757 0.8857 0.8887 0.8926 0.8949
SMFH 0.7214 0.7618 0.7895 0.8048 0.8561 0.8675 0.8795 0.8851
LCMFH 0.7282 0.7502 0.7703 0.7813 0.8537 0.8864 0.8849 0.8929
LFMH 0.7729 0.8020 0.8125 0.8221 0.8652 0.8780 0.8798 0.8849
LCSMFH 0.7346 0.7613 0.7889 0.8128 0.8689 0.8857 0.8948 0.9012
RSMFH 0.8160 0.8318 0.8424 0.8467 0.9018 0.9046 0.9065 0.9112
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Fig. 2 PR curves varied code length on LabelMe
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Table 3 mAP@50 Results on UCI

Methods Txt2Img

Img2Txt

16bits

32bits

64bits

16bits

32bits  64bits

CCA
SCM_seq
SCM_orth
CMFH
STMH
JIMFH
DRMFH
OCMFH
DCH
SMFH
LCMFH
LFMH
LCSMFH
RSMFH

0.5407
0.7196
0.5363
0.6632
0.6242
0.5129
0.7203
0.6645
0.7140
0.6617
0.7303
0.7563
0.7460
0.7907

0.4586
0.7284
0.3942
0.7477
0.6513
0.5249
0.7838
0.7377
0.7376
0.7057
0.7480
0.7787
0.7520
0.8058

0.3652
0.7437
0.3255
0.7597
0.6782
0.5337
0.7776
0.7397
0.7547
0.7467
0.7640
0.7927
0.7620
0.8087

0.5540
0.8774
0.2364
0.8028
0.8237
0.8320
0.8778
0.8128
0.8028
0.8851
0.8813
0.9007
0.9012
0.9412

0.5459
0.7200
0.6075
0.7917
0.8014
0.7456
0.8134
0.7727
0.8692
0.9090
0.8929
0.9199
0.9032
0.9487

0.4685
0.7421
0.4440
0.8466
0.8544
0.8072
0.8634
0.8267
0.8902
0.9160
0.9080
0.9271
0.9067
0.9536
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5.4.2 Results on UCI database

The second experiment was carried out on the UCI data-
base. The mAP values of our RSMFH approach and its
competitors are shown in Table 3, and the PR curves are
plotted in Fig. 3. In particular, we only set the length of
hash codes to 16 bits, 32 bits, and 64 bits because the
features of the two modalities on the UCI dataset are 76
and 64 dimensions, respectively. It is easy to know from
Table 3 that the mAP value of LCSMFH is higher than that
of LCMFH. This is because LCSMFH maintains inter-
modal and intra-modal similarity by adding graph structure
constraint. In addition, it is clear to see that our RSMFH
approach outperforms other comparison methods regard-
less of the length setting of hash codes in both Txt2Img and
Img2Txt tasks on the UCI dataset. The main reason is that
our RSMFH approach considers more knowledge hidden in
multimodal data than other competitors. The PR curves of
all approaches are plotted in Fig. 3. Noting that the
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Table 4 mAP@50 Results on

pascal Methods Txt2Img Img2Txt

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
CCA 0.3855 0.3864 0.4263 0.4227 0.4213 0.4703 0.4940 0.4586
SCM_seq 0.5986 0.6453 0.6555 0.6639 0.7264 0.7679 0.7882 0.8029
SCM_orth 0.5542 0.4384 0.3536 0.2524 0.6977 0.5558 0.4140 0.2863
CMFH 0.5402 0.5614 0.5725 0.5972 0.6113 0.6537 0.6825 0.6950
STMH 0.4516 0.4667 0.4972 0.5140 0.5714 0.6023 0.6376 0.6465
JIMFH 0.4331 0.5136 0.5248 0.5282 0.4386 0.4807 0.4838 0.4877
DRMFH 0.6272 0.6491 0.6543 0.6771 0.7235 0.7307 0.7450 0.7525
OCMFH 0.4654 0.4800 0.4890 0.5551 0.5544 0.5909 0.6264 0.6719
DCH 0.6550 0.6590 0.6716 0.7164 0.7937 0.8144 0.8161 0.8194
SMFH 0.5563 0.5790 0.6049 0.6214 0.6438 0.7132 0.7369 0.7381
LCMFH 0.5747 0.5920 0.6320 0.6335 0.7294 0.7560 0.7879 0.7898
LFMH 0.4872 0.6215 0.6438 0.6833 0.7084 0.7842 0.8054 0.8053
LCSMFH 0.5860 0.5972 0.6156 0.6568 0.7334 0.7557 0.7694 0.7821
RSMFH 0.6724 0.7182 0.7353 0.7406 0.8042 0.8184 0.8266 0.8370

proposed RSMFH method shows better retrieval perfor-
mance than other state-of-the-art methods in the Img2Txt
and Txt2Img tasks. Overall, our RSMFH approach
achieves satisfactory performances with different evalua-
tion metrics and different lengths of hash codes on the UCI
dataset.

5.4.3 Results on Pascal sentences database

In this experiment, all across-modal retrieval methods were
run on the Pascal sentences dataset. Table 4 shows the
mAP values of all methods. From Table 4, it should be
noted that the most effective unsupervised method and
supervised methods are DRMFH and DCH, respectively.
Moreover, we can see that our RSMFH approach outper-
forms both DRMFH and DCH in both Txt2Img and
Img2Txt tasks on the Pascal dataset. This is because the
proposed RSMFH model not only effectively considers the
shared and specific properties of multimodality data, but
also embeds the supervised label information in the hash
codes. From Fig. 4, it can also be seen that the PR curve of
our RSMFH approach is located at the top. Therefore, it
indicates that its retrieval performance is higher than other
methods using the PR curve metric.

5.4.4 Results on Wiki database

In this subsection, we carried out all cross-modal methods
on the Wiki dataset. Their mAP values in the Txt2Img and
Img2Txt tasks on the Wiki dataset are summarized in
Table 5. From Table 5, it can be observed that our RSMFH
approach achieves the best mAP value in two query tasks.
One possible reason is that RSMFH can capture more

@ Springer

semantic information in text modalities. In addition, the
performances of most methods in the Img2Txt task are
inferior to that in the Txt2Img task. This is because the
image modal loses less information when the multi-modal
data are mapped to the hash codes. Finally, we can see that
the performances of our RSMFH approach are also
improving with the increase of the hash code length. It
indicates that the longer the hash code can retain more
semantic information. However, some baseline methods,
such as CCA, are still inconsistent with the above obser-
vations. This phenomenon has been discussed and
explained in reference [29]. In addition, the PR curve in
Fig. 5 shows the effectiveness of our RSMFH approach in
retrieval tasks.

5.4.5 Discussion

From the results on four benchmark datasets, we can draw
the following observations:

1) By setting different lengths of hash codes, the
proposed RSMFH approach achieves the best mAP
values in two query tasks on four datasets (i.e.,
LabelMe, UCI, Pascal sentences, Wiki). It demon-
strates the effectiveness of the proposed RSMFH
model for dealing with multimedia data.

2) It can be found that the mAP values of all methods
have a relatively slight improvement on the Wiki.
One possible explanation is that the semantic differ-
ences between the two modalities on the Wiki
database are greater than in other databases.

3) We can see that most of the retrieval approaches
achieve higher mAP values in Txt2Img than Img2Txt
on four datasets. The main reason is that the original
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Fig. 4 PR curves varied code length on Pascal
T\;ibklie 5 mAP@30 Results on Methods Txt2Img Img2Txt
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
CCA 0.2265 0.1814 0.1554 0.1590 0.2902 0.2707 0.2299 0.2020
SCM_seq 0.2474 0.2367 0.2340 0.2634 0.3819 0.4479 0.4253 0.4325
SCM_orth 0.2134 0.1985 0.1941 0.1946 0.2973 0.2540 0.2179 0.2067
CMFH 0.2455 0.2564 0.2593 0.2641 0.6151 0.6303 0.6384 0.6474
STMH 0.2186 0.2368 0.2541 0.2646 0.6155 0.6342 0.6453 0.6536
JIMFH 0.2383 0.2402 0.2531 0.2576 0.6133 0.6272 0.6371 0.6464
DRMFH 0.2476 0.2636 0.2638 0.2687 0.5428 0.6110 0.6227 0.6255
OCMFH 0.2124 0.2289 0.2356 0.2221 0.6069 0.6193 0.6276 0.5998
DCH 0.2360 0.2547 0.2681 0.2714 0.6642 0.6791 0.6824 0.6931
SMFH 0.2285 0.2432 0.2570 0.2688 0.6326 0.6400 0.6628 0.6700
LCMFH 0.2285 0.2385 0.2489 0.2558 0.6442 0.6578 0.6612 0.6659
LFMH 0.2270 0.2441 0.2544 0.2614 0.6228 0.6342 0.6432 0.6421
LCSMFH 0.2315 0.2346 0.2457 0.2552 0.6508 0.6602 0.6643 0.6723
RSMFH 0.2598 0.2674 0.2742 0.2843 0.6745 0.6954 0.6989 0.7012
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Fig. 5 PR curves varied code length on Wiki

high-dimensional feature matrix of image modality
retains less semantic information than text modality
in the hash codes. From the semantic point of view,
textual information can effectively characterize
semantic information than visual features.

4) It is worth noting that our RSMFH approach
outperforms other approaches on four datasets. This
is because our proposed model can fully explore the
potential semantic information by utilizing the label
information and the specific attributes of each
modality. Thus, the hash codes learned from the
proposed RSMFH method are embedded with more
semantic information.

5.5 Convergence analysis
Since the proposed model is optimized by using the itera-

tive updating strategy, the convergence rate of the algo-
rithm is very essential on the retrieval performance.
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Figure 6 indicates the convergence curves of RSMFH on
four datasets, where we set the hash code length to 32 bits.
In Fig. 6, the x-axis is the iteration times, and the y-axis is
the values of the modal. From Fig. 6, it can be seen that the
proposed RSMFH method converges within 10 iterations
on all datasets, and this phenomenon demonstrates the
efficacy of the optimization scheme in practice.

5.6 Parameter sensitivity analysis

In this subsection, we set the length of the hash code to 32
bits, and analyze the parameters sensitivity in the proposed
RSMFH model. Specifically, the values of one parameter
are varied while others are fixed. A denotes the penalty
parameter controlling the weights of two modalities and we
set its values to 0.5. B stands for the weight parameter
controlling the label embedding, whose values are set from
0.0001 to 3000. o is the weight parameter controlling the
inconsistency of E; and E,, and in this paper we vary it
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Fig. 6 Convergence curves on four datasets

from le —8 to le —3. p is the weight parameter that
controls the mapping from the unified representation to the
hash code, whose values are changed from le —6 to
le + 2. y denotes the weight parameter and its range is set
to [0.1 1000]. Figures 7, 8, 9, and 10 show the retrieval
performances of the proposed RSMFH approach with dif-
ferent values of four parameters f3, o, i, and y. From these
figures, we can see that the performances of our RSMFH
approach can keep a relatively stable state in a large range
of parameters.

5.7 Ablation study

In this subsection, we conduct ablation experiments to
verify the effectiveness of several components of our
proposed model. Therefore, four variants of RSMFH, i.e.,
RSMFH -L, RSMFH-E, RSMFH-E1 and RSMFH-E2, are
constructed for comparison. Specifically, RSMFH-L dis-
cards the label information of multimodal data in com-
parison to the original model. RSMFH-E learns the unified
representation for each modality, but ignores the
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inconsistent representation of each modality. RSMFH-E1
removes the inner product term of both E; and E,.
RSMFH-E2 is constructed by removing the sparse con-
straint items. We compare the performances of RSMFH
with its four variants in two scenarios on the four datasets:
unseen class retrieval and seen class retrieval. Table 6
reports the mAP results with different hash code lengths.
From the experimental results, we can obtain the following
observations:

(1) As can be seen from Table 6, the mAP values of
RSMFH on four datasets is better than its variants.
This is because our proposed RSMFH method not
only retains shared attributes, but also considers the
specific attributes. At the same time, the sparse
constraints are used for the inconsistent representa-
tion, which effectively deals with the noise. In
addition, we also use label information to guide hash
code learning. This demonstrates the effectiveness of
our proposed RSMFH method.

Table 6 shows that RSMFH-L has the worst perfor-
mance among all the four data, which indicates that

@)
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considering the label information in hash code
learning can significantly improve the retrieval
performance.

RSMFH-E, RSMFH-E1 and RSMFH-E2 cannot
outperform RSMFH on the four datasets. The main
reason is that RSMFH-E method only learns the
unified representation of different modalities. There-
fore, it ignores the inconsistent representation of
each modality, which affects the performance of

(€))
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cross-modal retrieval. In addition, RSMFH also
outperform RSMFH-E1 and RSMFH-E2, which
shows that the inner product constraint and the
sparse constraints on the inconsistent expressions £
and E, can enlarge the gap of the inconsistent
representation and effectively reduce the influence of
noise and outliers, respectively.
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I:ltl)rled:tait:iauon study on the Methods Txt2Img Img2Txt
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits
Wiki
RSMFH -L 0.2510 0.2548 0.2552 0.2565 0.6024 0.6225 0.6249 0.6313
RSMFH -E 0.2487 0.2588 0.2687 0.2781 0.6708 0.6842 0.6895 0.6939
RSMFH -E1 0.2496 0.2606 0.2703 0.2793 0.6738 0.6865 0.6911 0.6959
RSMFH -E2 0.2515 0.2634 0.2675 0.2743 0.6725 0.6888 0.6912 0.6949
RSMFH 0.2598 0.2674 0.2742 0.2843 0.6745 0.6954 0.6989 0.7012
LabelMe
RSMFH -L 0.6763 0.7288 0.7722 0.7886 0.7370 0.8044 0.8450 0.8560
RSMFH -E 0.7987 0.8234 0.8333 0.8400 0.8905 0.9025 0.9024 0.9037
RSMFH -E1 0.8046 0.8266 0.8324 0.8381 0.8964 0.9010 0.9036 0.9095
RSMFH -E2 0.7915 0.8244 0.8339 0.8369 0.8874 0.9006 0.9010 0.9070
RSMFH 0.8160 0.8318 0.8424 0.8467 0.9018 0.9046 0.9065 0.9112
ucl
RSMFH -L 0.6821 0.7461 0.7703 0.7846 0.7931 0.8821 0.9050 0.9182
RSMFH -E 0.7860 07,984 0.8034 0.8070 0.9354 0.9461 0.9511 0.9489
RSMFH -El 0.7820 0.8016 0.8058 0.8096 0.9400 0.9472 0.9526 0.9516
RSMFH -E2 0.7856 0.8010 0.8036 0.8060 0.9384 0.9478 0.9502 0.9530
RSMFH 0.7907 0.8058 0.8087 0.8102 0.9412 0.9487 0.9536 0.9556
Pascal
RSMFH -L 0.5557 0.5962 0.6014 0.6102 0.6385 0.6879 0.7018 0.7169
RSMFH -E 0.6688 0.7060 0.7310 0.7385 0.7986 0.8105 0.8170 0.8283
RSMFH -El 0.6550 0.7054 0.7143 0.7370 0.8007 0.8112 0.8249 0.8230
RSMFH -E2 0.6680 0.7081 0.7304 0.7392 0.7974 0.8099 0.8225 0.8279
RSMFH 0.6724 0.7182 0.7353 0.7406 0.8042 0.8184 0.8266 0.8370

5.8 Visualization analysis

To better verify the effectiveness of the proposed RSMFH
method, we employ the t-SNE tool to visualize the distri-
bution of the original features and the learned representa-
tions. Specifically, we randomly select 600 image-text
pairs from the LabelMe dataset for visualization experi-
ments. The visualization results are shown in Fig. 11,
where different colors represent different categories and

different shapes represent different modalities, respec-
tively. Figure 11a, c and e show the visual distribution of
the original image features, the original text features and
the mixed features of the two modalities, respectively. The
results show that the original features of images and texts
are scattered, and it is difficult to separate the categories. In
addition, we can see from Fig. 11e that the scatterplots
from the same category cannot correspond. This indicates
that the distributions of the two modalities are also very
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different. It can be seen from Figs. 11 b and d that the
representations of the image and text modality, respec-
tively. This shows that the RSMFH method can effectively
learn the discriminative semantic representation. In
Fig. 11f, the learned image and text representations are
mixed together. Therefore, we can know that the repre-
sentations of the multimodality data obtained by our
RSMFH method have stronger discriminative ability than
those of the original multimodality data. In addition, the
image and text samples from the same category are close,
which demonstrates that our proposed model can effec-
tively narrow the gap between different modalities.

6 Conclusions

In this paper, we propose a novel cross-modal retrieval
approach, called RSMFH, which maintains both the
shared and the specific properties by decomposing each
modality into a shared semantic representation and an
inconsistent representation. Meanwhile, the inconsistent
representation of multi-modality data is imposed by the
sparse constraints and their inner product is minimized
simultaneously. Thus, it effectively improves the
robustness of our approach. In addition, the hash codes
are directly learned from the shared latent semantic
representations and embedded in the supervised label
information simultaneously. Therefore, our RSMFH
approach can learn more discriminative hash codes.
Experimental results on four benchmark datasets have
shown the effectiveness of our RSMFH approach.

Author contributions All authors contributed to the study conception
and design. Material preparation, data collection and experimental
analysis were performed by ZS, KY and DZ. The first draft of the
manuscript was written by KY and ZS. JY, ZY and XJW commented
on previous versions of the manuscript. All authors read and approved
the final manuscript.

Funding This work was supported by the National Natural Science
Foundation of China [Grant Nos. 61603159, 62162033, U21B2027,
U1836218], Yunnan Provincial Major Science and Technology Spe-
cial Plan Projects [Grant Nos. 202002AD080001, 202103AA080015],
Yunnan Foundation Research Projects [Grant Nos. 202101AT070438,
202101BE070001-056], Excellent Key Teachers of Qinglan Project
in Jiangsu Province.

Data availability The datasets analyzed during the current study are
available in the LabelMe, UCL, Pascal sentences, Wiki repository
http://labelme.csail.mit.edu/Release3.0/,  https://  www.ucl.ac.uk/
library, https://github.com/rupy/PascalSentenceDataset, http://www.
svcl.ucsd.edu/projects/crossmodal/.

Declarations

Conflict of interest All authors declare that they have no conflicts of
interest to this work.

Ethical approval Our study did not involve animals.

Informed consent Our study did not involve human participants.

References

1. Yang E, Deng C, Liu W et al (2017) Pairwise relationship guided
deep hashing for cross-modal retrieval. In: Proceedings of the
AAAI conference on artificial intelligence, pp 1618-1625

2. Yang E, Deng C, Li C et al (2018) Shared predictive cross-modal
deep quantization. In: IEEE transactions on neural networks and
learning systems, pp 1-12

3. ShuZ,LiL, YulJetal (2022) Online supervised collective matrix
factorization hashing for cross-modal retrieval. In: Applied
intelligence, pp 1-18

4. Shu Z, Yong K, Yu J et al (2022) Discrete asymmetric zero-shot
hashing with application to cross-modal retrieval. In: Neuro-
computing, pp 366-379

5. Zhang D, Wu X, Yin H et al (2022) MOON: multi-hash codes
joint learning for cross-media retrieval. In: Pattern recognition
letters, pp 19-25

6. Shu Z, Bai Y, Zhang D et al (2022) Specific class center guided
deep hashing for cross-modal retrieval. In: Information sciences,
pp 304-318

7. Deng C, Yang E, Liu T et al (2019) Unsupervised semantic-
preserving adversarial hashing for image search. In: IEEE
transactions on image processing, pp 4032—4044

8. Deng C, Yang E, Liu T et al (2019) Two-stream deep hashing
with class-specific centers for supervised image search. In: IEEE
transactions on neural networks and learning systems, pp 1-13

9. Yu J, Zhang D, Shu Z et al (2022) Adaptive multi-modal fusion
hashing via Hadamard matrix. In: Applied intelligence, pp 1-15

10. Gionis A, Indyk P, Motwani R et al (1999) Similarity search in
high dimensions via hashing. In: Proceedings of the 25th VLDB
conference, pp 518-529

11. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In:
Advances in neural information processing systems,
pp 1753-1760

12. Zhu X, Huang Z, Cheng H et al (2013) Sparse hashing for fast
multimedia search. In: ACM transactions on information systems,
pp 1-24

13. Zhu X, Huang Z, Shen HT et al (2013) Linear cross-modal
hashing for efficient multimedia search. In: ACM international
conference on multimedia, pp 143-152

14. Song J, Yang Y, Yang Y et al (2013) Inter-media hashing for
large-scale retrieval from heterogeneous data sources. In: ACM
international conference on multimedia of data, pp 785-796

15. Zheng F, Tang Y, Shao L (2018) Hetero-manifold regularization
for cross-modal hashing. In: IEEE transactions on pattern anal-
ysis and machine intelligence, pp 1059-1071

16. WuF, YuZ, Yang Y et al (2014) Sparse multi-modal hashing. In:
IEEE transactions on multimedia, pp 427—439

17. Ding G, Guo Y, Zhou J (2014) Collective matrix factorization
hashing for multimodal data. In: IEEE conference on computer
vision and pattern recognition, pp 2083-2090

@ Springer


http://labelme.csail.mit.edu/Release3.0/
http://www.ucl.ac.uk/library
http://www.ucl.ac.uk/library
https://github.com/rupy/PascalSentenceDataset
http://www.svcl.ucsd.edu/projects/crossmodal/
http://www.svcl.ucsd.edu/projects/crossmodal/

6684

Neural Computing and Applications (2023) 35:6665-6684

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

31.

32.

Wang D, Gao X, Wang X et al (2015) Semantic topic multimodal
hashing for cross-media retrieval. In: International joint confer-
ence on artificial intelligence, pp 3890-3896

Wang D, Wang Q, He L et al (2020) Joint and individual matrix
factorization hashing for large- scale cross-modal retrieval. In:
Pattern recognition, pp 1-12

Zhou J, Ding G, Guo Y (2014) Latent semantic sparse hashing for
cross-modal similarity search. In: ACM SIGIR conference on
research and development in information retrieval, pp 415424
Wang D, Wang Q, Gao X (2018) Robust and flexible discrete
hashing for cross—modal similarity search. In: IEEE transactions
on circuits and systems for video technology, pp 2703-2715
Yao T, Li Y, Guan W et al (2021) Discrete robust matrix fac-
torization hashing for large-scale cross-media retrieval. In: IEEE
transactions on knowledge and data engineering, pp 1-12
Bronstein MM, Bronstein AM, Michel F et al (2010) Data fusion
through cross-modality metric learning using similarity-sensitive
hashing. In: IEEE conference on computer vision and pattern
recognition, pp 3594-3601

Kumar S, Udupa R (2011) Learning hash functions for cross-view
similarity search. In: International joint conference on artificial
intelligence, pp 1360-1367

Zhang D, Li W-J (2014) Large-scale supervised multimodal
hashing with semantic correlation maximization. In: Proceedings
of the AAAI conference on artificial intelligence, pp 2177-2183
Lin Z, Ding G, Hu M et al (2015) Semantics-preserving hashing
for cross-view retrieval. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 3864-3872
Tang J, Wang K, Shao L (2016) Supervised matrix factorization
hashing for cross—modal retrieval. In: IEEE transactions on image
processing, pp 3157-3166

Mandal D, Chaudhury KN, Biswas S (2017) Generalized
semantic preserving hashing for n-label cross-modal retrieval. In:
IEEE conference on computer vision and pattern recognition,
pp 4076-4084

Wang D, Gao X, Wang X et al (2018) Label consistent matrix
factorization hashing for large-scale cross-modal similarity
search. In: IEEE transactions on pattern analysis and machine
intelligence, pp 2466-2479

. Xue F, Wang W, Zhou W et al (2020) Cross-modal retrieval via

label category supervised matrix factorization hashing. In: Pattern
recognition letters, pp 469-475

Zhang D, Wu X, Yu J (2021) Label consistent flexible matrix
factorization hashing for efficient cross-modal retrieval. In: ACM
transactions on multimedia computing communications and
applications, pp 1-18

Obozinski G, Taskar B, Jordan MI (2010) Joint covariate selec-
tion and joint subspace selection for multiple classification
problems. In: Statistics and computing, pp 231-252

@ Springer

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Kong D, Huang H, Huang H (2011) Robust nonnegative matrix
factorization using L, ;-norm. In: ACM international conference
on information and knowledge management, pp 673-682

Lai Z, Chen Y, Wu J et al (2018) Jointly sparse hashing for image
retrieval. In: IEEE transactions on image processing,
pp 6147-6158

Li C-X, Chen Z-D, Zhang P-F et al (2018) SCRATCH: a scalable
discrete matrix factorization hashing for cross-modal retrieval. In:
ACM international conference on multimedia, pp 1-9

Shen F, Shen C, Liu W et al (2015) Supervised discrete hashing.
In: IEEE conference on computer vision and pattern recognition,
pp 37-45

Russell BC, Torralba A, Murphy KP et al (2008) LabelMe: a
database and web-based tool for image annotation. In: Interna-
tional Journal of Computer Vision, pp 157-173

Seewald AK (2005) Digits—a dataset for handwritten digit
recognition. In: Austrian research institut for artificial intelligence
technical report, Vienna (Austria)

Rashtchian C, Young P, Hodosh M et al (2010) Collecting image
annotations using amazon’s mechanical turk. In: Proceedings of
the NAACL HLT 2010 workshop on creating speech and lan-
guage data with Amazon’s Mechanical Turk, pp 139-147
Rasiwasia N, Pereira J, Coviello E et al (2010) A new approach to
cross-modal multimedia retrieval. In: ACM international con-
ference on multimedia, pp 251-260

Rupnik J, Shawe-Taylor J (2010) Multi-view canonical correla-
tion analysis. In: Proceedings of the conference on data mining
and data warehouses, pp 1-4

Wang D, Wang Q, An Y et al (2020) Online collective matrix
factorization hashing for large-scale cross-media retrieval. In:
ACM SIGIR conference on research and development in infor-
mation retrieval, pp 1409-1418

Xu X, Shen F et al (2017) Learning discriminative binary codes
for large-scale cross-modal retrieval. In: IEEE transactions on
image processing, pp 2494-2507

Baeza-Yates R, Ribeiro-Neto B (1999) Modern information
retrieval. Addison Wesley

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.



	Robust supervised matrix factorization hashing with application to cross-modal retrieval
	Abstract
	Introduction
	Related work
	Cross-modal unsupervised hashing
	Cross-modal supervised hashing

	Robust supervised matrix factorization hashing (RSMFH)
	Notations
	The proposed method
	Algorithm optimization
	Hash function
	Complexity analysis

	Experiments
	Datasets
	Baselines and implementation details
	Evaluation metrics
	Experimental results
	Results on LabelMe database
	Results on UCI database
	Results on Pascal sentences database
	Results on Wiki database
	Discussion

	Convergence analysis
	Parameter sensitivity analysis
	Ablation study
	Visualization analysis

	Conclusions
	Author contributions
	Data availability
	References




