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Abstract
In recent years, hashing methods have received extensive attention in multimedia search due to their high computational

and storage efficiency. However, most of them explore the common representation of multi-modality data and then use it to

generate the hash codes but ignore the specific properties of each modality. To mitigate this problem, we propose a novel

hashing method, called Robust Supervised Matrix Factorization Hashing (RSMFH), which keeps both the shared and the

specific properties of multimodality data by decomposing each modality into a common representation and an inconsistent

representation. Moreover, we impose sparse constraints on the inconsistent part of each modality and minimize the

production of the consistent parts, simultaneously. In addition, the supervised label information among the data is

embedded into the learned hash codes enhancing the discriminative ability of RSMFH. We employ an efficient discrete

optimization strategy to solve the proposed model. Massive experiments on four benchmark databases show that our

approach achieves promising results in cross-modal retrieval tasks.

Keywords Hashing � Cross-modal retrieval � Matrix factorization � Supervised � Label information � Representation �
Sparse � Iterative

1 Introduction

In the past few years, the focus of retrieval technology is

transferred from single-modal to cross-modal owing to the

massive growth of multimedia data. Actually, the multi-

modal data are often not independent, but have essential

connections. Therefore, it has become a hot topic to learn

the correlation information between multimodality, which

is referred to as the heterogeneity gap. Recently,

researchers have made many efforts to bridge the

heterogeneity gap between multimodality and achieved

promising results in many real applications [1–6].

Hashing retrieval has been extensively investigated

owing to its powerful performance in large-scale search

tasks [7–9]. It aims to project original samples into com-

pact binary codes, which preserves their similarity in the

Hamming space. Therefore, it is an effective way to rep-

resent and search for massive data using binary codes due

to its high storage and computational efficiency. As a

popular data-independent method, Local Sensitive Hashing

(LSH) [10] adopts the random projection as the hash

function. Spectral hashing (SH) [11] is a well-known data-

dependent method and learns the hash codes by thresh-

olding the Laplace Beltrami eigenfunction of the manifold.

Sparse hashing [12] adopts a non-negative sparse coding

method to transform the original sample into a low-di-

mensional representation, and then it is embedded into a

binary code.

In cross-modal retrieval applications, the hashing tech-

nology can be divided into supervised and unsupervised

learning methods. Unsupervised methods explore correla-

tions from heterogeneous data by using binary codes. They
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include graph-based methods and matrix factorization-

based methods. The former maintains the correlations of

hash codes by constructing similar graphs, but it needs to

take expensive computational costs [12–14]. The latter

seeks the latent semantic correlations of multi-modalities

[15–19]. Therefore, they can avoid the construction of a

large-scale affinity matrix and thus greatly reduce the

computational complexity. To improve the search perfor-

mance by considering the label information, some super-

vised hashing methods based on cross-modal retrieval have

been proposed in the past few years. Although the super-

vised hashing models have improved considerably over the

unsupervised hashing models, it can be found that the

supervised hashing models still exist the following chal-

lenges. Firstly, the hash codes are learned from the latent

common representation and the specific properties of each

modality are neglected during matrix decomposition.

Therefore, it leads to achieving unsatisfactory retrieval

performance. Secondly, to improve the retrieval perfor-

mance of hashing algorithm, the supervised label infor-

mation of multimodality data should be embedded in the

hash codes in real applications. Thirdly, most of them

ignore the discreteness of the hash codes in the

optimization procedure. The relaxation strategy is used to

obtain a continuous solution, and then quantify the con-

tinuous solution to generate a hash code. However, this

strategy leads to large quantization errors and thus reduces

the performance in real applications.

In this work, a novel cross-modal retrieval method,

called Robust Supervised Matrix Factorization Hashing

(RSMFH), is proposed to address the aforementioned

challenges. It maintains both the shared and the specific

attributes of multi-modalities by decomposing each

modality into a consistent representation and an inconsis-

tent representation. Specifically, the inconsistency may be

caused by the noise and diversity of different modes in the

training data points. To reduce the impact of this incon-

sistency on cross-modal retrieval, we impose sparse con-

straints on the inconsistency of each modality. Therefore,

the robustness of our proposed model can be improved. In

addition, the proposed RSMFH method learns hash codes

from the shared latent semantic representations and con-

siders the supervised label information, simultaneously.

We develop an effective discrete scheme to optimize the

proposed model. Figure 1 shows the framework of our

RSMFH method in cross-modal retrieval. The

Fig. 1 The framework of our RSMFH approach
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experimental results show that our RSMFH approach can

achieve superior retrieval performance.

The contributions of this work can be highlighted as

follows:

(1) We present a unified matrix factorization framework

for learning hash codes. It decomposes each modal-

ity into a consistent representation and an inconsis-

tent representation. Then hash codes are generated

from the consistent representation of the multimodal

data. In addition, we impose the sparse constraints on

the inconsistent parts and minimize their inner

product, simultaneously. Therefore, the proposed

RSMFH approach further considers the specific

attributes of different modalities compared with

traditional methods.

(2) To consider the supervised label information, our

approach improves the accuracy by embedding the

supervised information into the hash codes. There-

fore, more discriminative hash codes are generated

from our proposed model.

(3) We present a discrete optimization scheme to solve

our proposed model and then give its complexity

analysis. Comprehensive experimental results on

four benchmark datasets have shown the superiority

of our RSMFH method.

The remainder of the paper is organized as follows:

Sect. 2 introduces previous work of cross-modal retrieval.

Section 3 details our approach. Section 4 gives the exper-

imental result and the analysis. Section 5 draws a conclu-

sion of this work.

2 Related work

This section provides a preliminary introduction to the

related work of cross-modal hashing.

2.1 Cross-modal unsupervised hashing

In the real world, most of the multimodal data are unla-

beled and it would take a lot of labor and time to label.

Therefore, unsupervised hashing approaches have attracted

extensive attention in cross-modal retrieval. Linear cross-

modal hashing (LCMH) [7] is a typical graph-based

method and utilizes the anchor graph to preserve the sim-

ilarity of both intra-model and inter-model in the Hamming

space. However, its disadvantage is that it needs expensive

time cost to construct the similarity graph. Matrix factor-

ization-based cross-modal retrieval methods aim to seek

the latent correlations semantic hidden in multimodal data.

Ding et al [17] proposed to learn unified hash codes gen-

erated from the common representation, which is obtained

by using the collect matrix factorization (CMF). Latent

semantic sparse hashing (LSSH) [20] was proposed to learn

hash codes by integrating matrix factorization and sparse

coding. Semantic topic multimodal hashing (STMH) [18]

adopts the robust matrix factorization to generate hash

codes. Wang et al [21] proposed to learn hash codes using

discrete matrix factorization. These methods, such as

CMFH, STMH and RFDH, learn the hash codes by finding

the common representation of multimodality. LSSH learns

separate hash codes that tend to keep the particular space of

every modality. Joint and individual matrix factorization

hashing (JIMFH) [19] and discrete robust matrix factor-

ization hashing (DRMFH) [22] explore both the shared and

the modal-specific properties of multimodal data. The

difference is that the former decomposes the multimodal

data twice and neglects the discreteness of the hash codes.

The latter not only decomposes the multimodal data only

once, but also obtains the discrete hash codes. However,

the aforementioned methods are completely unsupervised

learning hashing retrieval ones, and cannot use the super-

vised information to further improve the retrieval

performances.

2.2 Cross-modal supervised hashing

Different from the above-mentioned methods, supervised

hashing methods attempt to obtain more semantic rele-

vance from supervised label information to improve

retrieval accuracy. As a typical supervised hashing

method, cross-modal similarity-sensitive hashing

(CMSSH) [23] was proposed to use a binary classifica-

tion approach to learn hash codes. Kumar et al [24]

extend spectral hashing to multiple modalities and aim to

maintain both intra-modal and inter-modal correlations.

Semantic correlation maximization (SCM) [25] maxi-

mizes the correlations between different modalities to

generate the hash function. Semantic preserving hashing

algorithm (SePH) [26] learns hash codes by minimizing

the Kullback–Leibler (KL) divergence of a probability

distribution. Wang et al [27] proposed to consider both

the local geometric structure of each modality and the

label information across different modalities. Generalized

semantic preservation hashing (GSePH) [28] learns hash

codes by capturing the semantic similarity of different

modalities. Label consistent matrix factorization hashing

(LCMFH) [29] imposes the label information to con-

strain matrix decomposition. Label category supervised

matrix factorization hashing (LCSMFH) [30] not only

maintains both the inter-modal and the intra-modal

similarities of original samples, but also utilizes label

information to enhance the discriminative ability. Label

consistent flexible matrix factorization hashing (LFMH)

[31] can jointly learn modality-specific latent semantic
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spaces with similar semantics through flexible matrix

factorization. Three supervised methods, LCMFH, LFMH

and LCSMFH learn a unified representation that tends to

preserve the shared properties of multimodal data.

However, they neglect the specific properties of multi-

modality data in hash code learning. In this paper, a new

supervised multimodal hashing method, named robust

supervised matrix factorization hashing (RSMFH), is

proposed to preserve the shared properties and specific

properties of multimodal data. In addition, compared

with the aforementioned three methods, our proposed

method directly learns hash codes and optimizes our

proposed model with an efficient discrete optimization

scheme. Thereby, it can keep the discreteness of the hash

codes and effectively reduces the quantization loss.

3 Robust supervised matrix factorization
hashing (RSMFH)

This section introduces the proposed model (RSMFH) in

detail. Figure 1 plots the framework of the proposed

RSMFH approach. Specifically, it is divided into two

steps: training and retrieval. In the training step, each

modality is decomposed into a shared latent semantic

representation and an inconsistent specific representation.

Then the proposed RSMFH approach directly learns hash

codes from both the shared latent semantic representation

and the supervised label information, and gets the map-

ping matrix of each modality. In the second step, we use

the mapping matrix learned in the training step to project

the query sample to generate a hash code, and then the

retrieval task is performed based on this hash code.

4 Notations

In this paper, we take image modality and text modality as

an example. Given a set of multimodal data is O ¼ foigni¼1,

where oi ¼ ðxi; yjÞ is a multimodal data point, and xi and yi
are the feature vectors of the i� th instance of two

modalities, respectively. X ¼ fx1; x2; . . .; xng 2 Rdx�n and

Y ¼ fy1; y2; . . .; yng 2 Rdy�n are the feature matrices of two

modalities, where n denotes the number of samples, dx and

dy are the dimensionality of image samples and text sam-

ples, respectively, and dx 6¼ dy: In general, we set the

centers of samples to zero, i.e.,
Pn

i¼1xi ¼ 0,
Pn

i¼1yi ¼ 0.

Besides, we use L ¼ fl1; l2; . . .; lng 2 Rc�n to represent

the label matrix, where c is the number of categories. If the

i-th sample belongs to class j, thenlij ¼ 1; otherwise,lij ¼ 0.

Assuming that the length and the matrix of hash code are k

andB ¼ fb; b2; . . .; bng 2 Rk�n, respectively. k � k is the

Frobenius norm and sgnð�Þ denotes the sign function.

4.1 The proposed method

(a) Matrix factorization

Several studies have demonstrated that matrix factorization

approaches can effectively explore the common represen-

tation of multimodality. Ding et al [17] firstly applied CMF

method for cross-modal retrieval. It learns the hash codes

from the shared properties of multimodal data. However,

the specific properties of each modality are ignored. To

solve this issue, the proposed method decomposes each

multimodality into a consistent representation and an

inconsistent representation. Given the feature matrices X

and Y of two modalities, they can be decomposed into the

product of U1 ¼ u11; u12; . . .; u1r½ �dx�r
and V ¼ v1;½

v2; . . .; un�r�n
, and the product of U2 ¼ u21;½

u22; . . .; u2r�dy�r
and V ¼ v1; v2; . . .; un½ �r�n

, respectively.

Therefore, the model of CMF is given as follows:

X � U1 V þ E1ð Þ
Y � U2 V þ E2ð Þ

�

; ð1Þ

where U1 and U2 denote the basis matrices of the two

modalities, respectively. V stands for the unified repre-

sentation matrix. E1 2 Rk�n and E2 2 Rk�n are the incon-

sistent parts of the two modalities, respectively.

Using the Euclidean distance as the metric, Eq. (1) can

be rewritten as the following minimization problem:

F1 ¼ kX � U1 V þ E1ð Þ2Fþ 1� kð ÞY � U2 V þ E2ð Þ2F: ð2Þ

An ideal hypothesis is that the inconsistent parts of

multi-modalities should have a gap as large as possible. To

achieve this goal, the inner product of both E1 and E2 is

minimized and then added into Eq. (2). Thus, we can

further rewrite Eq. (2) as follows:

F1 ¼ kX � U1 V þ E1ð Þ2Fþ 1� kð ÞY
� U2 V þ E2ð Þ2FþaTr E1E

T
2

� �
; ð3Þ

where Tr :ð Þ denotes the matrix trace, and a stands for the

nonnegative parameter.

(b) Sparse constraint

Many studies on sparse representation theory have been

shown that l2;1-norm constraint is effective in reducing the

effect of noise and outliers [32–34]. The inconsistency of

each modality can be considered as a special kind of noise,

and thus we impose the l2;1-norm-based sparse constraint

on both E1 and E2. Therefore, the loss function F2 is given

as follows:
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F2 ¼ E12;1 þ E22;1 ð4Þ

(c) Hash codes scheme

Here, we consider learning the hash codes from the com-

mon representation of the multimodality. By introducing an

auxiliary matrix, the latent unified representation of dif-

ferent modalities is mapped to hash codes. Therefore, the

loss function F 3 is expressed as follows:

F3 ¼ B� RV2
F s:t: RRT ¼ I;B 2 �1; 1f gk�n: ð5Þ

where R 2 Rk�k is an projection matrix.

To generate more discriminative hash codes, the label

information of the data is fully considered. Specifically, the

learned hash codes B in Hamming space can be recon-

structed using a certain basis set. Therefore, the relation-

ship of both the label information L and the hash codes B

can be represented as follows:

F4 ¼ bB� PL2F s:t: B 2 �1; 1f gk�n: ð6Þ

where P 2 Rk�c denotes a basis matrix, and b denotes a

nonnegative parameter.

(d) Overall objective function.

Kernel trick aims to map the original samples into a high-

dimensional feature space, and is suitable for dealing with

the linear non-separable problem [35, 36]. In particular,

/ Xð Þ ¼ / x1ð Þ;/ x2ð Þ; . . .;/ xnð Þ½ �, / Yð Þ ¼
/ y1ð Þ;/ y2ð Þ; . . .;/ ynð Þ½ � are the kernel feature matrices of

two modalities, respectively. Here, / �ð Þ denotes the RBF

kernel function. Therefore, the kernel features / xið Þ and

/ yið Þ are given as

/ xið Þ ¼ exp � xi � a 1ð Þ2
1

2r2
1ð Þ

 !

; . . .; exp � xi � a 1ð Þ2
m

2r2
1ð Þ

 !" #

;

/ yið Þ ¼ exp � yi � a 2ð Þ2
1

2r2
2ð Þ

 !

; . . .; exp � yi � a 2ð Þ2
m

2r2
2ð Þ

 !" #

;

ð7Þ

where a tð Þ
j

n om

j¼1
(t = 1,2) denotes m anchor points. r 1ð Þ ¼

1
nm

Pn
i¼1

Pm
j¼1 xi � a 1ð Þ

j and r 2ð Þ ¼ 1
nm

Pn
i¼1

Pm
j¼1 yi � a 2ð Þ

j

denotes the kernel widths of two motilities, respectively.

For convenience, we replace / Xð Þ and / Yð Þ by using X

and Y , respectively. Thus, we get

X ¼ / Xð Þ; Y ¼ / Yð Þ: ð8Þ

By integrating Eqs. (3), (4), (5) and (6), the overall

objective function of the proposed RSMFH approach is

given as follows:

min
U1;U2;E1;E2;P;R;V ;B

FU1;U2;E1;E2;P;R;V ;B

¼ F1 þ F2 þ F3 þ F4

¼ kX � U1 V þ E1ð Þ2Fþ 1� kð ÞY � U2 V þ E2ð Þ2F
þ aTr E1E

T
2

� �
þ lB� RV2

F þ bB� PL2F
þ cE12;1 þ cE22;1 þ cR U1;U2;P;Vð Þ

s:t:RRT ¼ I;B 2 �1; 1f gk�n:

ð9Þ

where R :ð Þ ¼ �2F aims to avoid overfitting, and c is the

regularization parameter.

4.2 Algorithm optimization

Obviously, Eq. (9) is nonconvex and it is impossible to get

its global optimization solution. We can update one vari-

able while fixing other variables in this paper. Therefore,

Eq. (9) is solved by the following steps:

Step-1: update U1 by fixing U2;E1;E2;P;R;V ;B.

Equation (9) with respect to U1 can be simplified as

follows:

min
U1

kX � U1 V þ E1ð Þ2FþcR U1ð Þ: ð10Þ

By setting the partial derivative w.r.t. U1 to zero, we can

derive the closed solution of U1 as follows:

U1 ¼ X V þ E1ð ÞT V þ E1ð Þ V þ E1ð ÞTþ c
k
I

� ��1

: ð11Þ

Step-2: Update U2 by fixing U1;E1;E2;P;R;V ;B.

Equation (9) becomes the following form:

min
U2

1� kð ÞY � U2 V þ E2ð Þ2FþcR U2ð Þ ð12Þ

Similarly, we can get the closed solution of U2 as

follows:

U2 ¼ Y Vþ E2ð ÞT V þ E2ð Þ Vþ E2ð ÞTþ c
1� k

I
� ��1

:

ð13Þ

Step-3: Update E1 by fixing U1;U2;E2;P;R;V ;B.

Equation (9) can be simplified as follows:

min
E1

kX � U1 V þ E1ð Þ2FþcE12;1 þ aTr E1E
T
2

� �
: ð14Þ

To solve the l2;1-norm-based optimization problem, we

first introduce the following weighting matrix:

D
1ð Þ
ii ¼ 1

2Ei
12

; ð15Þ

where D
1ð Þ
ii is the i-th diagonal element of D1 and Ei

1 is the

i-th row of matrix E1. Then, Eq. (14) can be restated as
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min
E1

kX � U1 V þ E1ð Þ2FþcTr ET
1D1E1

� �
þ aTr E1E

T
2

� �
:

ð16Þ

By calculating the partial derivative of Eq. (16) for E1 to

zero, the closed solution of E1 is derived as follows:

E1 ¼ UT
1U1 þ

c
k
D1

� ��1

UT
1 X � U1Vð Þ � a

k
E2

� �
: ð17Þ

Step-4: Update E2 by fixing U1;U2;E1;P;R;V ;B. We

rewrite Eq. (9) as follows:

min
E2

1� kð ÞY � U2 V þ E2ð Þ2FþcE22;1 þ aTr E1E
T
2

� �
: ð18Þ

Similarly, we first introduce another weighting matrix as

follows:

D
2ð Þ
ii ¼ 1

2Ei
22

; ð19Þ

where D
2ð Þ
ii denotes the i� th diagonal element of D2 and E

i
2

stands for the i� th row of matrix E2. Then Eq. (18) can be

re-expressed as follows:

min
E2

1� kð ÞY � U2 V þ E2ð Þ2FþcTr ET
2D2E2

� �

þ aTr E1E
T
2

� �
: ð20Þ

By setting the derivative of Eq. (20) w.r.t. E2 to zero, the

closed solution of E2 is given as

E2 ¼ UT
2U2 þ

c
1� k

D2

� ��1

UT
2 Y � U2Vð Þ � a

k
E1

� �
:

ð21Þ

Step-5: Update P b y fixing U2;U1;E1;E2;R;V ;B.

Equation (9) can be simplified as:

min
P

bB� PL2F þ cR Pð Þ: ð22Þ

We take the partial derivative of Eq. (22) with respect to

P and set it to zero. Therefore, the closed solution of P is

derived as follows:

P ¼ bBLT
� �

bLLT þ cI
� ��1

: ð23Þ

Step-6: Updating V b y fixing U2;U1;E1;E2;R;P;B.

Equation (9) can be simplified as:

min
V

kX � U1 V þ E1ð Þ2Fþ 1� kð ÞY � U2 V þ E2ð Þ2F
þ lB� RV2

F þ cR Vð Þ
ð24Þ

By adopting a similar solution scheme, the closed

solution of V is given as follows:

V ¼ kUT
1U1 þ 1� kð ÞUT

2U2 þ RTRþ cI
� ��1

� kUT
1 X � U1E1ð Þ þ 1� kð ÞUT

2 Y � U2E2ð Þ þ RTB
� �

:

ð25Þ

Step-7: Update B b y fixing U2;U1;E1;E2;R;P;V .

Equation (9) can be simplified as

min
B

lB� RV2
F þ bB� PL2F

s:t:B 2 �1; 1f gk�n:
ð26Þ

Equation (26) can be written equivalently as follows:

min
B

l Tr BTB
� �

� 2Tr BTRV
� �

þ Tr VTRTRV
� �� �

þ b Tr BTB
� �

� 2Tr BTPL
� �

þ Tr LTPTPL
� �� �

s:t:B 2 �1; 1f gk�n:

ð27Þ

By removing the irrelevant parts with the variable B,

Eq. (27) can be written as follows:

argmin
B

lTr BTB
� �

� 2lTr BTRV
� �

Þ þ bTr BTB
� �

�2bTr BTPL
� �

s:t: B 2 �1; 1f gk�n:
ð28Þ

Since Tr BTBð Þ is a constant, the closed solution of B is

given as follows:

B ¼ sgn lRV þ bPLð Þ: ð29Þ

Step-8: Update R by fixing U2;U1;E1;E2;B;P;V . We

can simplify Eq. (9) as

min
R

lB� RV2
F s:t: RRT ¼ I ð30Þ

It is clear to see that Eq. (30) is a classic orthogonal

Procrustes problem and thus can be optimized through

solving SVD. We have BVT ¼ WXW
T
and the solution can

be obtained as follows:

R ¼ WW
T
: ð31Þ

In summary, Algorithm 1 describes the solution steps of

our RSMFH approach in detail.
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4.3 Hash function

As mentioned previously, our RSMFH approach includes

hash function learning and hash coding learning separately.

Specifically, we use Algorithm 1 to get the optimal hash

codes B, and then learn modality-specific hash functions to

deal with the out-of-sample problem. Generally, the hash

functions are learned by minimizing the following least-

squares regression problems:

min
W1

B�W1X
2
F þ cR W1ð Þ; ð32Þ

min
W2

B�W2Y
2
F þ cR W2ð Þ: ð33Þ

By setting the partial derivatives of Eqs. (34) and (35)

w.r.t. W1 and W2 to zero, respectively, the closed solutions

of W1 and W2 are given as follows:

W1 ¼ BXT
� �

XXT þ cI
� ��1

; ð34Þ

W2 ¼ BYT
� �

YYT þ cI
� ��1

: ð35Þ

Given a query data Xquey or Yquey, their hash codes are

obtained according to the following formula:

Bx ¼ sgn W1Xquey

� �
; ð36Þ

By ¼ sgn W2Yquey
� �

: ð37Þ

4.4 Complexity analysis

In this subsection, we present the complexity analysis of

our RSMFH approach. As we know from Sect. 3.3, the

overall complexity of the proposed optimization

scheme consists of updating U2;U2;E1;E2;P;R;V ;B.

Specifically, the computational complexity of updating

U2;U2,E1;E2 is O mk þ k2ð Þnþ k3 þ mk2ð Þtð Þ. We need

O kcnþ c2nþ c3 þ kc2ð Þtð Þ and O k2nþ k3ð Þtð Þ to update P
and R, respectively. The cost of updating V and B is

O 2k2mþ 2k3 þ 2k2nþ 4kmnð Þtð Þ and O k2nþ kcnð Þtð Þ,
respectively. Here, c is the number of categories and m is

the number of anchor points. k is the length of the hash

code. t is the number of update iterations, and c;m; k � n.

Therefore, the overall complexity of our RSMFH method is

linear with n (the size of the training dataset).

5 Experiments

5.1 Datasets

LabelMe [37]: The dataset consists of 2688 outside scenes

from eight categories. We use a 245-dimensional phrase

frequency and a 512-dimensional GIST feature to describe

each sample of text and image modalities, respectively. In

our experiments, 2016 image-text pairs are randomly

selected as the training dataset, and the rest 672 image-text

pairs are as the testing dataset.

UCI Handwritten Digit (UCI) [38]: The dataset includes

handwritten numerals (0–9). Each sample of image

modality and text modality is described by a 76-dimen-

sional vector and a 64-dimensional vector, respectively. In

the experiments, we randomly sampled 1500 image-text

pairs for training and the remaining 500 image-text pairs

were used as a testing dataset.

Pascal sentences [39]: This dataset consists of 1000

image-text pairs divided with 20 categories from VOC

2008. We utilize 5 separate sentences to describe each

image. For a fair comparison, we randomly selected 800

image-text pairs as the training dataset (40 pairs per class),

and 100 image-text pairs as the testing dataset (5 pairs per

class).

Wiki [40]: It contains 2866 image-text pairs collected

from Wikipedia. The AlexNet and the Latent Dirichlet

Allocation (LDA) model are used to extract the features of

all image and the text, respectively. Then each image and

each text can be represented by a 128-dimensional vector

and a 10-dimensional topic vector, respectively. The

training and testing datasets contain 2173 samples and 693

samples, respectively. Table 1 shows the statistics of the

four data sets.

5.2 Baselines and implementation details

To evaluate the effectiveness of RSMFH, we select several

state-of-the-art cross-modal hashing methods as the com-

parison algorithms.

• CCA [41]: This method learns hash codes by finding the

linear relationship of multimodal data.

• SCM_orth and SCM_seq [25]: The goal of SCM is to

make the distance of hash codes equal to the similarity

of label vectors. SCM_orth uses orthogonal projection

to learn hash codes. SCM_seq represents a sequential

learning method for generating hash codes.

Table 1 Statistics of the four data sets

Statistics LabelMe UCI Pascal sentences Wiki

Total size 2688 2000 1000 2866

Training dataset size 2016 1500 800 2173

Query dataset size 672 500 100 693

Category 8 10 20 10

Image feature 512-D 76-D 4096-D 128-D

Text feature 245-D 64-D 300-D 10-D
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• CMFH [17]: It learns the unified hash codes by

collective matrix factorization.

• STMH [18]: This method learns the modal-specific hash

codes by matrix factorization and topic model for image

and text, respectively.

• JIMFH [19]: It embeds the shared and specific

attributes of multimodal data into the learned hash

codes, thus improving the retrieval performance.

• DRMFH [22]: This method formulates the consistency

and inconsistency across different modalities into a

matrix factorization model, improving the retrieval

performance.

• OCMFH [42]: It learns discriminative hash codes for

streaming data by CMF in an online optimization

scheme.

• DCH [43]: It directly learns discriminative binary codes

while retaining the discrete constraints using label

information to guide hash code learning.

• SMFH [27]: It considers the local geometric structure of

each modal and the label information among multi-

modality data.

• LCMFH [29]: It imposes the label information to

constrain matrix decomposition.

• LCSMFH [30]: This method not only maintains both the

inter-modal and the intra-modal similarities of original

samples, but also utilizes label information to enhance

the discriminative ability.

• LFMH [31]: It can jointly learn modality-specific latent

semantic spaces with similar semantics through flexible

matrix factorization.

Among them, CCA, CMFH, STMH, DRMFH, OCMFH

and JIMFH are unsupervised learning methods, and

SCM_seq, SCM_orth, DCH, SMFH, LCMFH, LCSMFH,

LFMH and our proposed RSMFH fully consider the

supervised information. In this experiment, the codes of

DRMFH and LCSMFH are reproduced by ourselves, and

the source codes of the rest are publicly available. To

comprehensively validate the effectiveness of our proposed

model, we perform two common tasks: (1) Txt2Img: search

for the images using text; (2) Img2Txt: search for the text

using images.

5.3 Evaluation metrics

The first well-known evaluation metric is the mean of

Average Precision (mAP). Given a query and the retrieved

results, the definition of average precision (AP) is given as

follows:

AP ¼ 1

N

XR

r¼1

P rð Þd rð Þ; ð38Þ

where N denotes the number of relevant instances in the

query set, and P rð Þ is the precision of the top r-th retrieval

instance. d rð Þ ¼ 1 if the r-th retrieval instance is a neighbor

of the query, otherwise, d rð Þ ¼ 0. In our experiments, R is

empirically set to 50, and thus it is noted as mAP@50. Due

to the randomness of the initialization of the variables, we

run the algorithms five times and reported their average

values as the final results.

Another well-known metric is the Precision-Recall (PR)

curve, whose goal is to show the tradeoff between recall

and precision. In general, the greater the Precision-Recall

curve, the higher the retrieval performance. Its detailed

description can be referred to in [44].

5.4 Experimental results

Four lengths of binary codes are used in the experiments to

verify the retrieval performances. Specifically, the lengths

of hash codes are empirically set with difference values,

such as 16 bits, 32 bits, 64 bits and 128 bits. The results of

all approaches on four multi-modal datasets are presented

in this subsection.

5.4.1 Results on LabelMe database

The first experiment was carried out on the LabelMe

database. The mAP values of both RSMFH and other

competitors on the LabelMe dataset are reported in

Table 2, and their PR curves are shown in Fig. 2. In this

experiment, we empirically varied the length of hash codes

from 16 to 128 bits. From Table 2, it can be seen that our

proposed RSMFH performs better than other competitors

in both Txt2Img and Img2Txt tasks on the LabelMe

dataset. Compared with the best performances among

competitors, our RSMFH approach is improved by 4.31%,

2.98%, 2.98%, 2.46% in the Img2Txt task, respectively,

and 3.29%, 1.89%, 1.17%, and 1% in the Txt2Img task,

respectively. In addition, it is worth noting that the per-

formance of DRMFH is higher than that of JIMFH. This is

because the discrete optimization of the DRMFH model

plays an important role during the optimization process.

Moreover, we can find that our proposed RSMFH method

outperforms the DRMFH method, which fully demon-

strates the effectiveness of embedding the label informa-

tion into hash codes. In addition, it can be seen from Fig. 2

that our RSMFH method outperforms other state-of-the-art

approaches on different tasks with different hash code

lengths. Therefore, it also verifies the effectiveness of our

RSMFH approach from another aspect. In our paper, the

bold in the tables indicate the best performances.
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Table 2 mAP@50 Results on

LabelMe
Methods Txt2Img Img2Txt

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.5127 0.4612 0.3994 0.3743 0.6289 0.5741 0.5553 0.5540

SCM_seq 0.6773 0.7382 0.7421 0.7494 0.8587 0.8760 0.8756 0.8774

SCM_orth 0.4740 0.3628 0.2873 0.2364 0.6443 0.4900 0.3962 0.2364

CMFH 0.6081 0.6262 0.6568 0.6880 0.7524 0.7773 0.7963 0.8028

STMH 0.6236 0.7050 0.7331 0.7485 0.7670 0.8109 0.8225 0.8237

JIMFH 0.6243 0.6762 0.6944 0.7096 0.7688 0.8164 0.8273 0.8320

DRMFH 0.7681 0.7888 0.7937 0.7951 0.8449 0.8711 0.8827 0.8778

OCMFH 0.6181 0.6362 0.6868 0.6910 0.7511 0.7806 0.8055 0.8128

DCH 0.6845 0.7512 0.7515 0.7757 0.8857 0.8887 0.8926 0.8949

SMFH 0.7214 0.7618 0.7895 0.8048 0.8561 0.8675 0.8795 0.8851

LCMFH 0.7282 0.7502 0.7703 0.7813 0.8537 0.8864 0.8849 0.8929

LFMH 0.7729 0.8020 0.8125 0.8221 0.8652 0.8780 0.8798 0.8849

LCSMFH 0.7346 0.7613 0.7889 0.8128 0.8689 0.8857 0.8948 0.9012

RSMFH 0.8160 0.8318 0.8424 0.8467 0.9018 0.9046 0.9065 0.9112

Fig. 2 PR curves varied code length on LabelMe
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5.4.2 Results on UCI database

The second experiment was carried out on the UCI data-

base. The mAP values of our RSMFH approach and its

competitors are shown in Table 3, and the PR curves are

plotted in Fig. 3. In particular, we only set the length of

hash codes to 16 bits, 32 bits, and 64 bits because the

features of the two modalities on the UCI dataset are 76

and 64 dimensions, respectively. It is easy to know from

Table 3 that the mAP value of LCSMFH is higher than that

of LCMFH. This is because LCSMFH maintains inter-

modal and intra-modal similarity by adding graph structure

constraint. In addition, it is clear to see that our RSMFH

approach outperforms other comparison methods regard-

less of the length setting of hash codes in both Txt2Img and

Img2Txt tasks on the UCI dataset. The main reason is that

our RSMFH approach considers more knowledge hidden in

multimodal data than other competitors. The PR curves of

all approaches are plotted in Fig. 3. Noting that the

Table 3 mAP@50 Results on UCI

Methods Txt2Img Img2Txt

16bits 32bits 64bits 16bits 32bits 64bits

CCA 0.5407 0.4586 0.3652 0.5540 0.5459 0.4685

SCM_seq 0.7196 0.7284 0.7437 0.8774 0.7200 0.7421

SCM_orth 0.5363 0.3942 0.3255 0.2364 0.6075 0.4440

CMFH 0.6632 0.7477 0.7597 0.8028 0.7917 0.8466

STMH 0.6242 0.6513 0.6782 0.8237 0.8014 0.8544

JIMFH 0.5129 0.5249 0.5337 0.8320 0.7456 0.8072

DRMFH 0.7203 0.7838 0.7776 0.8778 0.8134 0.8634

OCMFH 0.6645 0.7377 0.7397 0.8128 0.7727 0.8267

DCH 0.7140 0.7376 0.7547 0.8028 0.8692 0.8902

SMFH 0.6617 0.7057 0.7467 0.8851 0.9090 0.9160

LCMFH 0.7303 0.7480 0.7640 0.8813 0.8929 0.9080

LFMH 0.7563 0.7787 0.7927 0.9007 0.9199 0.9271

LCSMFH 0.7460 0.7520 0.7620 0.9012 0.9032 0.9067

RSMFH 0.7907 0.8058 0.8087 0.9412 0.9487 0.9536

Fig. 3 PR curves varied code length on UCI
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proposed RSMFH method shows better retrieval perfor-

mance than other state-of-the-art methods in the Img2Txt

and Txt2Img tasks. Overall, our RSMFH approach

achieves satisfactory performances with different evalua-

tion metrics and different lengths of hash codes on the UCI

dataset.

5.4.3 Results on Pascal sentences database

In this experiment, all across-modal retrieval methods were

run on the Pascal sentences dataset. Table 4 shows the

mAP values of all methods. From Table 4, it should be

noted that the most effective unsupervised method and

supervised methods are DRMFH and DCH, respectively.

Moreover, we can see that our RSMFH approach outper-

forms both DRMFH and DCH in both Txt2Img and

Img2Txt tasks on the Pascal dataset. This is because the

proposed RSMFH model not only effectively considers the

shared and specific properties of multimodality data, but

also embeds the supervised label information in the hash

codes. From Fig. 4, it can also be seen that the PR curve of

our RSMFH approach is located at the top. Therefore, it

indicates that its retrieval performance is higher than other

methods using the PR curve metric.

5.4.4 Results on Wiki database

In this subsection, we carried out all cross-modal methods

on the Wiki dataset. Their mAP values in the Txt2Img and

Img2Txt tasks on the Wiki dataset are summarized in

Table 5. From Table 5, it can be observed that our RSMFH

approach achieves the best mAP value in two query tasks.

One possible reason is that RSMFH can capture more

semantic information in text modalities. In addition, the

performances of most methods in the Img2Txt task are

inferior to that in the Txt2Img task. This is because the

image modal loses less information when the multi-modal

data are mapped to the hash codes. Finally, we can see that

the performances of our RSMFH approach are also

improving with the increase of the hash code length. It

indicates that the longer the hash code can retain more

semantic information. However, some baseline methods,

such as CCA, are still inconsistent with the above obser-

vations. This phenomenon has been discussed and

explained in reference [29]. In addition, the PR curve in

Fig. 5 shows the effectiveness of our RSMFH approach in

retrieval tasks.

5.4.5 Discussion

From the results on four benchmark datasets, we can draw

the following observations:

1) By setting different lengths of hash codes, the

proposed RSMFH approach achieves the best mAP

values in two query tasks on four datasets (i.e.,

LabelMe, UCI, Pascal sentences, Wiki). It demon-

strates the effectiveness of the proposed RSMFH

model for dealing with multimedia data.

2) It can be found that the mAP values of all methods

have a relatively slight improvement on the Wiki.

One possible explanation is that the semantic differ-

ences between the two modalities on the Wiki

database are greater than in other databases.

3) We can see that most of the retrieval approaches

achieve higher mAP values in Txt2Img than Img2Txt

on four datasets. The main reason is that the original

Table 4 mAP@50 Results on

pascal
Methods Txt2Img Img2Txt

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.3855 0.3864 0.4263 0.4227 0.4213 0.4703 0.4940 0.4586

SCM_seq 0.5986 0.6453 0.6555 0.6639 0.7264 0.7679 0.7882 0.8029

SCM_orth 0.5542 0.4384 0.3536 0.2524 0.6977 0.5558 0.4140 0.2863

CMFH 0.5402 0.5614 0.5725 0.5972 0.6113 0.6537 0.6825 0.6950

STMH 0.4516 0.4667 0.4972 0.5140 0.5714 0.6023 0.6376 0.6465

JIMFH 0.4331 0.5136 0.5248 0.5282 0.4386 0.4807 0.4838 0.4877

DRMFH 0.6272 0.6491 0.6543 0.6771 0.7235 0.7307 0.7450 0.7525

OCMFH 0.4654 0.4800 0.4890 0.5551 0.5544 0.5909 0.6264 0.6719

DCH 0.6550 0.6590 0.6716 0.7164 0.7937 0.8144 0.8161 0.8194

SMFH 0.5563 0.5790 0.6049 0.6214 0.6438 0.7132 0.7369 0.7381

LCMFH 0.5747 0.5920 0.6320 0.6335 0.7294 0.7560 0.7879 0.7898

LFMH 0.4872 0.6215 0.6438 0.6833 0.7084 0.7842 0.8054 0.8053

LCSMFH 0.5860 0.5972 0.6156 0.6568 0.7334 0.7557 0.7694 0.7821

RSMFH 0.6724 0.7182 0.7353 0.7406 0.8042 0.8184 0.8266 0.8370

6676 Neural Computing and Applications (2023) 35:6665–6684

123



Fig. 4 PR curves varied code length on Pascal

Table 5 mAP@50 Results on

Wiki
Methods Txt2Img Img2Txt

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.2265 0.1814 0.1554 0.1590 0.2902 0.2707 0.2299 0.2020

SCM_seq 0.2474 0.2367 0.2340 0.2634 0.3819 0.4479 0.4253 0.4325

SCM_orth 0.2134 0.1985 0.1941 0.1946 0.2973 0.2540 0.2179 0.2067

CMFH 0.2455 0.2564 0.2593 0.2641 0.6151 0.6303 0.6384 0.6474

STMH 0.2186 0.2368 0.2541 0.2646 0.6155 0.6342 0.6453 0.6536

JIMFH 0.2383 0.2402 0.2531 0.2576 0.6133 0.6272 0.6371 0.6464

DRMFH 0.2476 0.2636 0.2638 0.2687 0.5428 0.6110 0.6227 0.6255

OCMFH 0.2124 0.2289 0.2356 0.2221 0.6069 0.6193 0.6276 0.5998

DCH 0.2360 0.2547 0.2681 0.2714 0.6642 0.6791 0.6824 0.6931

SMFH 0.2285 0.2432 0.2570 0.2688 0.6326 0.6400 0.6628 0.6700

LCMFH 0.2285 0.2385 0.2489 0.2558 0.6442 0.6578 0.6612 0.6659

LFMH 0.2270 0.2441 0.2544 0.2614 0.6228 0.6342 0.6432 0.6421

LCSMFH 0.2315 0.2346 0.2457 0.2552 0.6508 0.6602 0.6643 0.6723

RSMFH 0.2598 0.2674 0.2742 0.2843 0.6745 0.6954 0.6989 0.7012
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high-dimensional feature matrix of image modality

retains less semantic information than text modality

in the hash codes. From the semantic point of view,

textual information can effectively characterize

semantic information than visual features.

4) It is worth noting that our RSMFH approach

outperforms other approaches on four datasets. This

is because our proposed model can fully explore the

potential semantic information by utilizing the label

information and the specific attributes of each

modality. Thus, the hash codes learned from the

proposed RSMFH method are embedded with more

semantic information.

5.5 Convergence analysis

Since the proposed model is optimized by using the itera-

tive updating strategy, the convergence rate of the algo-

rithm is very essential on the retrieval performance.

Figure 6 indicates the convergence curves of RSMFH on

four datasets, where we set the hash code length to 32 bits.

In Fig. 6, the x-axis is the iteration times, and the y-axis is

the values of the modal. From Fig. 6, it can be seen that the

proposed RSMFH method converges within 10 iterations

on all datasets, and this phenomenon demonstrates the

efficacy of the optimization scheme in practice.

5.6 Parameter sensitivity analysis

In this subsection, we set the length of the hash code to 32

bits, and analyze the parameters sensitivity in the proposed

RSMFH model. Specifically, the values of one parameter

are varied while others are fixed. k denotes the penalty

parameter controlling the weights of two modalities and we

set its values to 0.5. b stands for the weight parameter

controlling the label embedding, whose values are set from

0:0001 to 3000. a is the weight parameter controlling the

inconsistency of E1 and E2, and in this paper we vary it

Fig. 5 PR curves varied code length on Wiki
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from 1e� 8 to 1e� 3. l is the weight parameter that

controls the mapping from the unified representation to the

hash code, whose values are changed from 1e� 6 to

1eþ 2. c denotes the weight parameter and its range is set

to 0:1 1000½ �. Figures 7, 8, 9, and 10 show the retrieval

performances of the proposed RSMFH approach with dif-

ferent values of four parameters b; a; l; and c. From these

figures, we can see that the performances of our RSMFH

approach can keep a relatively stable state in a large range

of parameters.

5.7 Ablation study

In this subsection, we conduct ablation experiments to

verify the effectiveness of several components of our

proposed model. Therefore, four variants of RSMFH, i.e.,

RSMFH -L, RSMFH-E, RSMFH-E1 and RSMFH-E2, are

constructed for comparison. Specifically, RSMFH-L dis-

cards the label information of multimodal data in com-

parison to the original model. RSMFH-E learns the unified

representation for each modality, but ignores the

inconsistent representation of each modality. RSMFH-E1

removes the inner product term of both E1 and E2.

RSMFH-E2 is constructed by removing the sparse con-

straint items. We compare the performances of RSMFH

with its four variants in two scenarios on the four datasets:

unseen class retrieval and seen class retrieval. Table 6

reports the mAP results with different hash code lengths.

From the experimental results, we can obtain the following

observations:

(1) As can be seen from Table 6, the mAP values of

RSMFH on four datasets is better than its variants.

This is because our proposed RSMFH method not

only retains shared attributes, but also considers the

specific attributes. At the same time, the sparse

constraints are used for the inconsistent representa-

tion, which effectively deals with the noise. In

addition, we also use label information to guide hash

code learning. This demonstrates the effectiveness of

our proposed RSMFH method.

(2) Table 6 shows that RSMFH-L has the worst perfor-

mance among all the four data, which indicates that

Fig. 6 Convergence curves on four datasets
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considering the label information in hash code

learning can significantly improve the retrieval

performance.

(3) RSMFH-E, RSMFH-E1 and RSMFH-E2 cannot

outperform RSMFH on the four datasets. The main

reason is that RSMFH-E method only learns the

unified representation of different modalities. There-

fore, it ignores the inconsistent representation of

each modality, which affects the performance of

cross-modal retrieval. In addition, RSMFH also

outperform RSMFH-E1 and RSMFH-E2, which

shows that the inner product constraint and the

sparse constraints on the inconsistent expressions E1

and E2 can enlarge the gap of the inconsistent

representation and effectively reduce the influence of

noise and outliers, respectively.

Fig. 7 mAP versus parameter b

Fig. 8 mAP versus parameter a

Fig. 9 mAP versus parameter l
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5.8 Visualization analysis

To better verify the effectiveness of the proposed RSMFH

method, we employ the t-SNE tool to visualize the distri-

bution of the original features and the learned representa-

tions. Specifically, we randomly select 600 image-text

pairs from the LabelMe dataset for visualization experi-

ments. The visualization results are shown in Fig. 11,

where different colors represent different categories and

different shapes represent different modalities, respec-

tively. Figure 11a, c and e show the visual distribution of

the original image features, the original text features and

the mixed features of the two modalities, respectively. The

results show that the original features of images and texts

are scattered, and it is difficult to separate the categories. In

addition, we can see from Fig. 11e that the scatterplots

from the same category cannot correspond. This indicates

that the distributions of the two modalities are also very

Fig. 10 mAP versus parameter c

Table 6 Ablation study on the

four datasets
Methods Txt2Img Img2Txt

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Wiki

RSMFH -L 0.2510 0.2548 0.2552 0.2565 0.6024 0.6225 0.6249 0.6313

RSMFH -E 0.2487 0.2588 0.2687 0.2781 0.6708 0.6842 0.6895 0.6939

RSMFH -E1 0.2496 0.2606 0.2703 0.2793 0.6738 0.6865 0.6911 0.6959

RSMFH -E2 0.2515 0.2634 0.2675 0.2743 0.6725 0.6888 0.6912 0.6949

RSMFH 0.2598 0.2674 0.2742 0.2843 0.6745 0.6954 0.6989 0.7012

LabelMe

RSMFH -L 0.6763 0.7288 0.7722 0.7886 0.7370 0.8044 0.8450 0.8560

RSMFH -E 0.7987 0.8234 0.8333 0.8400 0.8905 0.9025 0.9024 0.9037

RSMFH -E1 0.8046 0.8266 0.8324 0.8381 0.8964 0.9010 0.9036 0.9095

RSMFH -E2 0.7915 0.8244 0.8339 0.8369 0.8874 0.9006 0.9010 0.9070

RSMFH 0.8160 0.8318 0.8424 0.8467 0.9018 0.9046 0.9065 0.9112

UCI

RSMFH -L 0.6821 0.7461 0.7703 0.7846 0.7931 0.8821 0.9050 0.9182

RSMFH -E 0.7860 07,984 0.8034 0.8070 0.9354 0.9461 0.9511 0.9489

RSMFH -E1 0.7820 0.8016 0.8058 0.8096 0.9400 0.9472 0.9526 0.9516

RSMFH -E2 0.7856 0.8010 0.8036 0.8060 0.9384 0.9478 0.9502 0.9530

RSMFH 0.7907 0.8058 0.8087 0.8102 0.9412 0.9487 0.9536 0.9556

Pascal

RSMFH -L 0.5557 0.5962 0.6014 0.6102 0.6385 0.6879 0.7018 0.7169

RSMFH -E 0.6688 0.7060 0.7310 0.7385 0.7986 0.8105 0.8170 0.8283

RSMFH -E1 0.6550 0.7054 0.7143 0.7370 0.8007 0.8112 0.8249 0.8230

RSMFH -E2 0.6680 0.7081 0.7304 0.7392 0.7974 0.8099 0.8225 0.8279

RSMFH 0.6724 0.7182 0.7353 0.7406 0.8042 0.8184 0.8266 0.8370
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Fig. 11 t-SNE visualization of the raw features and the learned semantic features
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different. It can be seen from Figs. 11 b and d that the

representations of the image and text modality, respec-

tively. This shows that the RSMFH method can effectively

learn the discriminative semantic representation. In

Fig. 11f, the learned image and text representations are

mixed together. Therefore, we can know that the repre-

sentations of the multimodality data obtained by our

RSMFH method have stronger discriminative ability than

those of the original multimodality data. In addition, the

image and text samples from the same category are close,

which demonstrates that our proposed model can effec-

tively narrow the gap between different modalities.

6 Conclusions

In this paper, we propose a novel cross-modal retrieval

approach, called RSMFH, which maintains both the

shared and the specific properties by decomposing each

modality into a shared semantic representation and an

inconsistent representation. Meanwhile, the inconsistent

representation of multi-modality data is imposed by the

sparse constraints and their inner product is minimized

simultaneously. Thus, it effectively improves the

robustness of our approach. In addition, the hash codes

are directly learned from the shared latent semantic

representations and embedded in the supervised label

information simultaneously. Therefore, our RSMFH

approach can learn more discriminative hash codes.

Experimental results on four benchmark datasets have

shown the effectiveness of our RSMFH approach.
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