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Abstract: Aiming at the time-consuming and labor-intensive problem of obtaining large-scale multi-
hop question and answer training dataset, we proposed a multi-hop question generation model based
on the contrastive learning idea. The model was divided into the generation phase and the contrastive
learning scoring phase. In the generation phase, candidate multi-hop questions were generated by
executing the inference graph. In the contrastive learning scoring phase, candidate questions were
scored and sorted through a candidate question scoring model without reference question based on the
contrastive learning idea, and the best candidate question was selected. This model had to some extent
narrowed the gap between unsupervised methods and manual annotation methods, effectively

alleviating the problem of lacking a multi-hop question and answer dataset. The experimental results

. 2022-10-24.
(1983—), s , . s . , E-mail: whbin2007 @
126.com. : (1979—), . s s , E-mail: 736559039@qq.com.
( : 61966020) ( : CB22052C143A).



1104 ( ) 61

on HotpotQA dataset show that the multi-hop question generation model based on contrastive learning
can effectively expand the training data and greatly reduce the cost of manually labeling data.

Keywords: multi-hop question generation; machine reading comprehension; contrastive learning
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Fig.1 Multi-hop question generation model based on contrastive learning
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1
Table 1 Parameter settings
eval batch size 32 attention dropout 0.1
eval per epoch 10 hidden dropout 0.1
num train epochs 4 hidden size 1024
gradient accumulation steps 8 max position embeddings 512
learning rate 2X107° num attention heads 16
vocab size 28 996 num hidden layers 24
5 EM F,
Fig.5 Convergence process of EM and F, values during experimental process
3.3
2. 2 s SpanBERT,
b
Bridge  Comparison s Bridge
, , Comparison
) s Comparison
2
Table 2 Experimental results of each model
Bridge Comparison Total
EM F, EM F, EM F,
SpanBER T 68.2 83.5 74.2 80.3 69.4 82.8
65.1 78.4 53.6 67.0 69.5 82.7
Bridge-Only 55.4 71.4 12.4 19.1 46.7 60.9
Comparison-Only 9.8 14.5 38.2 45.0 15.5 20.9
SQuAD-Transfer 54.6 69.7 25.3 35.2 48.7 62.8
MQA-QG™ 56.5 72.2 48.8 54.4 54.9 68.6
54.2 68.1 43.8 55.5 54.8 69.0

’ Q hotpot-select F 1 6 9 . O )
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4 (SQuAD-Transfer, Bridge-Only, Comparison-Only, MQA-QG).
, Fy 14.2 13.8,
. Comparison  Total F, MQA-QG 0.9 0.4,

Bridge MQA-QG s

s s
HotpotQA
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